altera/MainController/RAM9X8_SerialBusMaster.vhd

374 lines
12 KiB
VHDL
Raw Normal View History

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity RAM9X8_SerialBusMaster is
generic(
SB_BASE_ADDRESS : integer := 0;
DATA_BUS_WIDTH : integer := 8;
ADDRESS_BUS_WIDTH : integer := 9
);
port(
clk : in std_logic;
data : inout std_logic_vector(DATA_BUS_WIDTH - 1 downto 0);
address : in std_logic_vector(ADDRESS_BUS_WIDTH - 1 downto 0);
we : in std_logic;
oe : in std_logic;
ce : in std_logic;
sbclk : out std_logic := '0';
sbdataout : out std_logic := '0';
sbdatain : in std_logic
);
end entity;
architecture behavorial of RAM9X8_SerialBusMaster is
signal SB_DATA_LOWER : integer := SB_BASE_ADDRESS;
signal SB_DATA_UPPER : integer := SB_BASE_ADDRESS + 1;
signal SB_CMD_LOWER : integer := SB_BASE_ADDRESS + 2;
signal SB_CMD_UPPER : integer := SB_BASE_ADDRESS + 3;
signal SB_CONTROL_LOWER : integer := SB_BASE_ADDRESS + 4;
signal SB_CONTROL_UPPER : integer := SB_BASE_ADDRESS + 5;
signal dataBufIn : std_logic_vector(15 downto 0) := (others => '0');
signal dataBufOut : std_logic_vector(15 downto 0) := (others => '0');
signal cmdBuf : std_logic_vector(15 downto 0) := (others => '0');
signal controlBuf : std_logic_vector(15 downto 0) := (others => '0');
signal direction : std_logic := '0';
signal addressToTransmit : std_logic_vector(7 downto 0) := x"00";
signal dataToTransmit : std_logic_vector(15 downto 0) := x"0000";
signal dataFromDevices : std_logic_vector(15 downto 0) := x"0000";
type CommunicationState_start is (Waiting, TransmitAddress, TransmitData, TransmitCRC, TransmitCheck, ReceiveData, ReceiveCRC, ReceiveCheck, Timeout);
signal CommunicationState : CommunicationState_start := Waiting;
signal resetCRC : std_logic := '1';
signal CRC : std_logic_vector(3 downto 0) := x"0";
signal bufCRC : std_logic_vector(3 downto 0) := x"0";
signal dataCRC : std_logic_vector(31 downto 0) := x"00000000"; -- переключает
signal readyCRC : std_logic := '0'; -- готовность контрольной суммы
signal lineBusy : std_logic := '1';
signal start : std_logic := '0';
signal startPrev : std_logic := '0';
begin
process (we, oe, ce)
variable addr : integer range 0 to 2**ADDRESS_BUS_WIDTH - 1 := 0;
begin
if (ce = '0') then -- Если микросхема выбрана
addr := conv_integer(address);
if (addr = SB_DATA_UPPER or addr = SB_DATA_LOWER or addr = SB_CMD_UPPER or addr = SB_CMD_LOWER
or addr = SB_CONTROL_UPPER or addr = SB_CONTROL_LOWER) then
if (oe = '0' and we = '1') then -- Если сигнал чтения активен, а записи нет
case addr is
when SB_DATA_UPPER =>
data <= dataBufOut(15 downto 8);
when SB_DATA_LOWER =>
data <= dataBufOut(7 downto 0);
when SB_CMD_UPPER =>
data <= cmdBuf(15 downto 8);
when SB_CMD_LOWER =>
data <= cmdBuf(7 downto 0);
when SB_CONTROL_UPPER =>
data <= controlBuf(15 downto 8);
start <= '0';
when SB_CONTROL_LOWER =>
data <= controlBuf(7 downto 0);
when others =>
data <= (others => 'Z'); -- Запретить запись на шину
end case;
elsif (oe = '1' and we = '0') then -- Если сигнал записи активен, а чтения нет
case addr is
when SB_DATA_UPPER =>
dataBufIn(15 downto 8) <= data;
when SB_DATA_LOWER =>
dataBufIn(7 downto 0) <= data;
when SB_CMD_UPPER =>
cmdBuf(15 downto 8) <= data;
start <= '1';
when SB_CMD_LOWER =>
cmdBuf(7 downto 0) <= data;
when others =>
data <= (others => 'Z'); -- Запретить запись на шину
end case;
else
data <= (others => 'Z'); -- Запретить запись на шину
end if;
else
data <= (others => 'Z'); -- Запретить запись на шину
end if;
else
data <= (others => 'Z'); -- Запретить запись на шину
end if;
end process;
process(clk) is
variable count : integer range 0 to 255 := 0;
variable halfPeriod : integer range 0 to 255 := 50;
variable pause : integer range 0 to 255 := 200;
variable state : integer range 0 to 1 := 1;
variable bitCnt : integer range -1 to 31 := 0;
variable latch : integer range 0 to 1 := 0;
begin
if(rising_edge (clk)) then
case CommunicationState is
when Waiting =>
sbclk <= '0';
bitCnt := 8;
latch := 0;
resetCRC <= '1';
count := 0;
sbdataout <= '0';
state := 1;
if start = '1' and startPrev = '0' then
direction <= cmdBuf(15);
dataCRC(24) <= cmdBuf(15);
addressToTransmit(7 downto 0) <= cmdBuf(7 downto 0);
dataCRC(23 downto 16) <= cmdBuf(7 downto 0);
dataToTransmit <= dataBufIn;
dataCRC(15 downto 0) <= dataBufIn;
controlBuf(15 downto 0) <= (others => '0');
halfPeriod := conv_integer(cmdBuf(14 downto 8));
CommunicationState <= TransmitAddress;
end if;
when Timeout =>
if count < pause then
sbclk <= '0';
count := count + 1;
else
controlBuf(1) <= '0';
CommunicationState <= Waiting;
end if;
when TransmitAddress =>
if bitCnt = -1 then
if direction = '1' then
CommunicationState <= TransmitData;
resetCRC <= '0';
else
CommunicationState <= ReceiveData;
end if;
bitCnt := 15;
else
if count < halfPeriod and state = 1 then
if count = 0 then
if latch = 0 then
sbdataout <= direction;
controlBuf(1) <= '1';
else
sbdataout <= addressToTransmit(bitCnt);
end if;
sbclk <= '0';
end if;
count := count + 1;
elsif count = halfPeriod and state = 1 then
latch := 1;
count := 0;
state := 0;
elsif count < halfPeriod and state = 0 then
if count = 0 then
sbclk <= '1';
end if;
count := count + 1;
elsif count = halfPeriod and state = 0 then
count := 0;
state := 1;
bitCnt := bitCnt - 1;
end if;
end if;
when TransmitData =>
if bitCnt = -1 then
CommunicationState <= TransmitCRC;
bitCnt := 3;
else
if count < halfPeriod and state = 1 then
if count = 0 then
sbdataout <= dataToTransmit(bitCnt);
sbclk <= '0';
end if;
count := count + 1;
elsif count = halfPeriod and state = 1 then
count := 0;
state := 0;
elsif count < halfPeriod and state = 0 then
if count = 0 then
sbclk <= '1';
end if;
count := count + 1;
elsif count = halfPeriod and state = 0 then
count := 0;
state := 1;
bitCnt := bitCnt - 1;
end if;
end if;
when TransmitCRC =>
if readyCRC = '1' then
if bitCnt = -1 then
CommunicationState <= TransmitCheck;
else
if count < halfPeriod and state = 1 then
if count = 0 then
sbdataout <= CRC(bitCnt);
sbclk <= '0';
end if;
count := count + 1;
elsif count = halfPeriod and state = 1 then
count := 0;
state := 0;
elsif count < halfPeriod and state = 0 then
if count = 0 then
sbclk <= '1';
end if;
count := count + 1;
elsif count = halfPeriod and state = 0 then
count := 0;
state := 1;
bitCnt := bitCnt - 1;
end if;
end if;
else
--CommunicationState <= Waiting;
count := 0;
CommunicationState <= Timeout;
controlBuf(15) <= '1';
end if;
when TransmitCheck =>
if count < halfPeriod and state = 1 then
if count = 0 then
sbclk <= '0';
end if;
count := count + 1;
else
count := 0;
if sbdatain = '0' then
controlBuf(0) <= '1';
else
controlBuf(14) <= '1';
end if;
--CommunicationState <= Waiting;
count := 0;
CommunicationState <= Timeout;
end if;
when ReceiveData =>
if bitCnt = -1 then
CommunicationState <= ReceiveCRC;
bitCnt := 3;
else
if count < halfPeriod and state = 1 then
if count = 0 then
sbclk <= '0';
end if;
count := count + 1;
elsif count = halfPeriod and state = 1 then
dataFromDevices(bitCnt) <= sbdatain;
count := 0;
state := 0;
elsif count < halfPeriod and state = 0 then
if count = 0 then
sbclk <= '1';
end if;
count := count + 1;
elsif count = halfPeriod and state = 0 then
count := 0;
state := 1;
bitCnt := bitCnt - 1;
end if;
end if;
when ReceiveCRC =>
if bitCnt = -1 then
CommunicationState <= ReceiveCheck;
else
if count < halfPeriod and state = 1 then
if count = 0 then
sbclk <= '0';
end if;
count := count + 1;
elsif count = halfPeriod and state = 1 then
bufCRC(BitCnt) <= sbdatain;
count := 0;
state := 0;
if bitCnt = 0 then
dataCRC(24) <= direction;
dataCRC(23 downto 16) <= addressToTransmit;
dataCRC(15 downto 0) <= dataFromDevices(15 downto 0);
resetCRC <= '0';
end if;
elsif count < halfPeriod and state = 0 then
if count = 0 then
sbclk <= '1';
end if;
count := count + 1;
elsif count = halfPeriod and state = 0 then
count := 0;
state := 1;
bitCnt := bitCnt - 1;
end if;
end if;
when ReceiveCheck =>
if readyCRC = '1' then
if bufCRC = CRC then
dataBufOut <= dataFromDevices;
controlBuf(0) <= '1';
else
controlBuf(13) <= '1';
end if;
else
controlBuf(12) <= '1';
end if;
--CommunicationState <= Waiting;
count := 0;
CommunicationState <= Timeout;
when others =>
end case;
startPrev <= start;
end if;
end process;
process(clk)
variable lacth : integer range 0 to 1 := 0;
variable bitCnt : integer range -1 to 24 := 0;
begin
if rising_edge(clk) then
if resetCRC = '1' then
bitCnt := 24;
CRC <= x"0";
lacth := 0;
readyCRC <= '0';
else
if readyCRC = '0' then
if lacth = 0 then
if bitCnt /= -1 then
CRC(3) <= CRC(2) xor CRC(3);
CRC(2) <= CRC(1) xor CRC(0);
CRC(1) <= CRC(0);
CRC(0) <= dataCRC(bitCnt) xor CRC(1);
bitCnt := bitCnt - 1;
else
bitCnt := 3;
lacth := 1;
end if;
else
if bitCnt /= -1 then
CRC(3) <= CRC(2) xor CRC(3);
CRC(2) <= CRC(1) xor CRC(0);
CRC(1) <= CRC(0);
CRC(0) <= '1' xor CRC(1);
bitCnt := bitCnt - 1;
else
readyCRC <= '1';
--countreadyCRC <= countreadyCRC + 1;
end if;
end if;
end if;
end if;
end if;
end process;
end behavorial;