Compare commits

11 Commits

Author SHA1 Message Date
0a017eee9f ап 2025-11-15 19:16:26 +03:00
69ae4f8cf2 notjob 2025-11-15 16:10:18 +03:00
e1bb35e6b6 up 2025-11-07 16:43:19 +03:00
46068a5ffe up 2025-11-07 16:30:14 +03:00
81d95635f9 comit_job ver new modbus 2025-11-07 16:22:00 +03:00
461a206fe7 commit 2025-11-05 09:26:36 +03:00
345ab9df8b add iddle irq 2025-10-27 16:49:16 +03:00
694a8ab793 добавил распиновку разъема 2025-10-27 16:47:50 +03:00
1a519ebf02 добавил setup file для настроек 2025-10-27 16:46:43 +03:00
1c6642fd80 Merge branch 'main' of https://git.arktika.cyou/Andrey/ds18b20-MODBUS 2025-07-28 21:13:23 +03:00
7d74d67d8b добавил работу с modbus tcp 2025-07-28 21:12:22 +03:00
65 changed files with 5647 additions and 3267 deletions

4
.gitmodules vendored
View File

@@ -5,3 +5,7 @@
path = labview_proj
url = https://git.arktika.cyou/Andrey/labview_proj.git
branch = master
[submodule "core/STM32_Modbus"]
path = core/STM32_Modbus
url = https://git.arktika.cyou/set506/STM32_Modbus.git
branch = release

1
core/STM32_Modbus Submodule

Submodule core/STM32_Modbus added at cba13802b1

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,13 @@
#ifndef __PROJ_SETUP
#define __PROJ_SETUP
//**********BEGIN defines***********
//#define OldVer
#define MAX_SENSE 32 // НЕ ДЕЛАТЬ МЕНЬШЕ 16
//**********END defines***********
#endif

View File

@@ -20,10 +20,12 @@
/* Includes ------------------------------------------------------------------*/
#include "onewire.h"
#include "PROJ_setup.h"
/* Data Structure ------------------------------------------------------------*/
#define DS18B20_DEVICE_AMOUNT 30
#define DS18B20_DEVICE_AMOUNT MAX_SENSE
/* Register ------------------------------------------------------------------*/
#define DS18B20_CMD_CONVERT 0x44
@@ -75,7 +77,7 @@ typedef struct
{
uint8_t DevAddr[DS18B20_DEVICE_AMOUNT][8];
} DS18B20_Drv_t;
extern DS18B20_Drv_t DS;;
extern DS18B20_Drv_t DS;
extern OneWire_t OW;
/* External Function ---------------------------------------------------------*/

View File

@@ -1,5 +1,12 @@
/* USER CODE BEGIN Header */
/**
***************************************************************
* 1 2 3 4 5 6 7 8 *
* --- +++ *
* *
*****************************************************************
******************************************************************************
* @file : main.h
* @brief : Header for main.c file.
@@ -28,9 +35,29 @@ extern "C" {
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
#include "modbus_data.h"
#include "PROJ_setup.h"
#include "dallas_tools.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
typedef enum
{
FuncOK=0,
FuncERROR=1
}FuncStat;
typedef enum {
CONFIG_DEVICE_ID = 0,
CONFIG_BAUDRATE,
CONFIG_CALIBRATION,
CONFIG_SETTINGS
} ConfigParams;
typedef enum {
STATE_OPEN_VALVE = 0, // open
STATE_CLOSE_VALVE= 1 // close
@@ -42,17 +69,19 @@ typedef struct
uint16_t location;
uint8_t t_open;
float t_set;
uint8_t t_close;
uint8_t status_T_sense:1 ;
uint8_t t_close;
uint8_t status_T_sense:1 ;
ValveState state;
uint16_t count;
}TEMP;
uint16_t count;
}TEMP_TypeDef;
typedef struct {
uint32_t init_tsens : 1; // Update Interrupt Flag (бит 0) — флаг переполнения/обновления
// ... (другие биты могут быть зарезервированы или использоваться в расширенных таймерах)
} Flags_TypeDef;
@@ -71,10 +100,16 @@ typedef struct
extern void handle_command(char* cmd);
typedef void (*FunctionPointer)(void);
uint16_t handle_valves(TEMP* tmp_sense);
void init_all_T_sense(void);
uint16_t handle_valves(TEMP_TypeDef* temp_sense[MAX_SENSE]);
void init_setpoint_all_T_sense(TEMP_TypeDef* temp_sense, int size_array);
void iwdg_refresh(void);
void led_blink(GPIO_TypeDef *GPIOx,uint16_t GPIO_Pin,uint8_t iter,uint16_t delay);
FuncStat Field_modbus(MB_DataStructureTypeDef* MB_DATA, Flags_TypeDef* flag);
FuncStat packStruct(MB_DataStructureTypeDef* MB_DATA,int sizeARR);
void Check_Tconnect(MB_DataStructureTypeDef* MB_DATA, Flags_TypeDef* flag ,DALLAS_HandleTypeDef* hdallas, int a[50]);
FuncStat value_control(void );
void reinit_t_sens(void);
/* USER CODE END ET */
@@ -96,6 +131,8 @@ void Error_Handler(void);
/* USER CODE END EFP */
/* Private defines -----------------------------------------------------------*/
#define Relay_dc5v_Pin GPIO_PIN_10
#define Relay_dc5v_GPIO_Port GPIOA
#define One_wire_Pin GPIO_PIN_15
#define One_wire_GPIO_Port GPIOA

View File

@@ -22,7 +22,7 @@
#define __STM32F1xx_IT_H
#ifdef __cplusplus
extern "C" {
extern "C" {
#endif
/* Private includes ----------------------------------------------------------*/

View File

@@ -7,7 +7,7 @@
//extern uint8_t devices_found ;
extern uint8_t roms[MAX_DEVICES][8];
extern char rx_buffer[64];
extern TEMP temp_sense[30];
extern TEMP_TypeDef temp_sense[30];
extern uint8_t init;
int test_var=0;
//void handle_command(char* cmd)

View File

@@ -25,6 +25,7 @@
/* USER CODE END 0 */
/*----------------------------------------------------------------------------*/
/* Configure GPIO */
/*----------------------------------------------------------------------------*/
@@ -50,15 +51,26 @@ void MX_GPIO_Init(void)
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4
|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8
|GPIO_PIN_9|GPIO_PIN_10|One_wire_Pin, GPIO_PIN_SET);
|GPIO_PIN_9|Relay_dc5v_Pin|One_wire_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_10
|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|GPIO_PIN_15, GPIO_PIN_SET);
|GPIO_PIN_15, GPIO_PIN_RESET);
/*Configure GPIO pin : PC13 */
GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : PA0 */
GPIO_InitStruct.Pin = GPIO_PIN_0;
@@ -68,10 +80,10 @@ void MX_GPIO_Init(void)
/*Configure GPIO pins : PA1 PA2 PA3 PA4
PA5 PA6 PA7 PA8
PA9 PA10 PAPin */
PA9 Relay_dc5v_Pin One_wire_Pin */
GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4
|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8
|GPIO_PIN_9|GPIO_PIN_10|One_wire_Pin;
|GPIO_PIN_9|Relay_dc5v_Pin|One_wire_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

View File

@@ -27,13 +27,25 @@
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "dallas_tools.h"
#include "def.h"
#include <stdio.h>
#include "rs_message.h"
#include "modbus.h"
#include "eeprom_emul.h"
#include "stdio.h"
#include "flash_ring.h"
#include "string.h"
@@ -41,41 +53,42 @@
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
int fputc(int ch, FILE *f)
{
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, HAL_MAX_DELAY);
return ch;
}
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
uint16_t iter,cnt=5;
uint8_t ralay_5v_on_var=0;
uint16_t iter, cnt = 5;
uint8_t init_retries = 5;
uint8_t ralay_5v_on_var = 0;
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
float temperature;
extern uint8_t roms[MAX_DEVICES][8];
//extern uint8_t devices_found ;
uint8_t _debug_init=1;
//TEMP temp_sense[30];
float set_temp_old[30];
char rx_buffer[64];
uint8_t rx_index = 0;
char command_ready = 0;
uint8_t uart_byte = 0;
uint8_t first_in=1;
DALLAS_SensorHandleTypeDef sens[30];
float temperature;
uint8_t roms[MAX_DEVICES][8];
Flags_TypeDef flag;
//extern uint8_t devices_found ;
uint8_t _debug_init = 0;
TEMP_TypeDef temp_sense[30];
float set_temp_old[30];
char rx_buffer[64];
uint8_t rx_index = 0;
char command_ready = 0;
uint8_t uart_byte = 0;
uint8_t first_in = 1;
DALLAS_SensorHandleTypeDef sens[30];
int init_sens = 0;
FlashRecord_t* record;
uint8_t flash_buff[RECORD_SIZE - 4];
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
int last_page_addr = LAST_PAGE_ADDR;
/* USER CODE END PV */
@@ -95,150 +108,134 @@ void SystemClock_Config(void);
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM1_Init();
MX_USART1_UART_Init();
MX_TIM2_Init();
MX_ADC1_Init();
MX_CAN_Init();
MX_I2C1_Init();
MX_RTC_Init();
MX_SPI1_Init();
/* USER CODE BEGIN 2 */
led_blink(GPIOC, 13, rest_iter, reset_blink_delay);
MODBUS_FirstInit(&hmodbus1, &mb_huart, &mb_htim);
MODBUS_Config(&hmodbus1, MODBUS_DEVICE_ID, MODBUS_TIMEOUT, MODBUS_MODE_SLAVE);
// Запуск приема Modbus
MODBUS_SlaveStart(&hmodbus1, NULL);
uint8_t uart_byte = 0;
Dallas_BusFirstInit(&htim1);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>)
reinit_t_sens();
init_setpoint_all_T_sense(temp_sense, hdallas.onewire->RomCnt);
MB_DATA.InRegs.num_Tsens = hdallas.onewire->RomCnt;
// BufferState_t buffer_state = buffer_init();
for(int i=0;i<RECORD_SIZE;i++)
{
flash_buff[i]=i;
/* USER CODE END Init */
}
/* USER CODE END 2 */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END SysInit */
// if (MB_DATA.Coils.relay_struct[0].state_val_bit.Temp11_relay_isOn)
// {
// MB_DATA.Coils.relay_struct[0].state_val_bit.Temp11_relay_isOn = 0;
// BufferState_t state = buffer_init();
// uint32_t idx = (state.write_index ) % RECORDS_PER_PAGE;
// FlashRecord_t* record = buffer_read_record(idx);
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM1_Init();
MX_USART1_UART_Init();
MX_TIM2_Init();
MX_ADC1_Init();
MX_CAN_Init();
MX_I2C1_Init();
MX_RTC_Init();
MX_SPI1_Init();
/* USER CODE BEGIN 2 */
// }
// if (MB_DATA.Coils.relay_struct[0].state_val_bit.Temp10_relay_isOn)
// {
// MB_DATA.Coils.relay_struct[0].state_val_bit.Temp10_relay_isOn = 0;
// FlashRecord_t new_record;
// new_record.timestamp = HAL_GetTick();
// memcpy(new_record.data, flash_buff, sizeof(new_record.data));
led_blink(GPIOC,13,rest_iter,reset_blink_delay);
MODBUS_FirstInit();
uint8_t uart_byte = 0;
RS_Receive_IT(&hmodbus1, &MODBUS_MSG);
Dallas_BusFirstInit(&htim1);
// èíèöèàëèçàöèÿ ïî ïîðÿäêó íàéäåííûõ äàò÷èêîâ
// Èíèöèàëèçàöèÿ ïî èíäåêñó (ïîðÿäêîâîìó íîìåðó íàéäåííîãî äàò÷èêà)
for ( int i=0; i<hdallas.onewire->RomCnt;i++)
{
// Èíèöèàëèçàöèÿ ïî ROM-àäðåñó
//sens[i].Init.init_func = &Dallas_SensorInitByROM;
// sens[i].Init.InitParam.ROM = rom_address;
sens[i].Init.InitParam.Ind = i;
sens[i].Init.init_func = &Dallas_SensorInitByInd;
sens[i].Init.Resolution = DALLAS_CONFIG_9_BITS;
MB_DATA.HoldRegs.set_Temp[i] =sens[i].set_temp =20.;
MB_DATA.HoldRegs.set_hyst[i]=sens[i].hyst =1;
Dallas_AddNewSensors(&hdallas, &sens[i]);
// HAL_StatusTypeDef status = buffer_write_record(&new_record, &buffer_state);
}
/* USER CODE END 2 */
// if (status == HAL_OK)
// {
// // printf("Record written successfully\n");
// GPIOC->ODR |= 1 << 13;
// }
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if (_debug_init||MB_DATA.Coils.init_param)
{
_debug_init=0;
MB_DATA.Coils.init_param=0;
for(int i=0;i<hdallas.onewire->RomCnt;i++)
{
sens[i].set_temp=MB_DATA.HoldRegs.set_Temp[i];
sens[i].hyst=MB_DATA.HoldRegs.set_hyst[i];
}
// }
temp_sense[0].t_close = 1;
Field_modbus(&MB_DATA, &flag);
Check_Tconnect(&MB_DATA, &flag, &hdallas, 0);
value_control();
init_setpoint_all_T_sense(temp_sense, hdallas.onewire->RomCnt);
// handle_valves(temp_sense[]);
Dallas_StartConvertTAll(&hdallas, DALLAS_WAIT_BUS, 0);
for(int i = 0; i < hdallas.onewire->RomCnt; i++)
{
if(sens[i].isLost)
{
sens[i].lost_cnt ++;
}
Dallas_ReadTemperature(&sens[i]);
MB_DATA.InRegs.sens_Temp[i] = sens[i].temperature * 10;
/////////////////////////заменить на define ralay_5v_on_var GPIOA->ODR|=1<<10;
ralay_5v_on_var = MB_DATA.Coils.coils[1].state_val_bit.state_val_05;
if (ralay_5v_on_var)
{
GPIOA->ODR |= 1 << 10;
}
else
{
GPIOA->ODR &= ~(1 << 10);
}
}
Dallas_StartConvertTAll(&hdallas,DALLAS_WAIT_BUS,0);
for(int i=0;i<hdallas.onewire->RomCnt;i++)
{
if(sens[i].isLost)
{
sens[i].lost_cnt ++;
}
Dallas_ReadTemperature(&sens[i]);
sens[i].set_temp = MB_DATA.HoldRegs.set_Temp[i];
MB_DATA.InRegs.sens_Temp[i]=sens[i].temperature*10;
}
ralay_5v_on_var=MB_DATA.Coils.coils[1].state_val_bit.state_val_05;
if (ralay_5v_on_var)
{
GPIOA->ODR|=1<<10;
}
else
{
GPIOA->ODR&=~(1<<10);
}
//// if (sens[i].temperature<sens[i].set_temp-sens[i].hyst)
////
//// {
////
//// MB_DATA.Coils.coils[0].all|=1<<i;
////
//// }
////
//// else
////
//// if (sens[i].temperature>sens[i].set_temp+sens[i].hyst)
//// {
////
//// MB_DATA.Coils.coils[0].all&=~(1<<i);
////
//// }
//// if(GPIOB11_valve)
//// {
//// GPIOB->ODR|=1<<11;
//// }
//// else
//// {
//// GPIOB->ODR&=~(1<<11);
////
//// }
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
//iwdg_refresh();
//HAL_Delay(200);
}
/* USER CODE END 3 */
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
//iwdg_refresh();
//HAL_Delay(200);
}
/* USER CODE END 3 */
}
/**
@@ -247,126 +244,258 @@ int main(void)
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_ADC;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_ADC;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void iwdg_refresh(void)
{
IWDG->KR = 0xAAAA; // Ñáðîñèòü òàéìåð
}
void led_blink(GPIO_TypeDef *GPIOx,uint16_t GPIO_Pin,uint8_t iter,uint16_t delay)
{
for(int i=0;i<iter;i++)
{
GPIOx->ODR^=(1<<GPIO_Pin);
HAL_Delay(delay);
}
}
//void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
//{
// if (huart->Instance == USART1)
// {
// if(first_in)
// {
// first_in=0;
// rx_index = 0;
//
// }
//
//
//
// static uint8_t ch;
// HAL_UART_Receive_IT(&huart1, &ch, 1);
void iwdg_refresh(void)
{
IWDG->KR = 0xAAAA; // <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
}
void led_blink(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, uint8_t iter, uint16_t delay)
{
for(int i = 0; i < iter; i++)
{
GPIOx->ODR ^= (1 << GPIO_Pin);
HAL_Delay(delay);
}
}
// if (ch == '\r' || ch == '\n')
// {
// rx_buffer[rx_index] = 0;
// command_ready = 1;
// rx_index = 0;
// first_in=1;
//
// }
// else
// {
// if (rx_index < sizeof(rx_buffer) - 1)
// {
// rx_buffer[rx_index++] = ch;
// }
// }
// }
//}
void Check_Tconnect(MB_DataStructureTypeDef* MB_DATA, Flags_TypeDef* flag, DALLAS_HandleTypeDef* hdallas, int a[0])
{
for(int i = 0; i < hdallas->onewire->RomCnt; i++)
{
if(sens[i].isLost)
{
//init_sens=1;
}
//uint16_t handle_valves(TEMP* tmp_sense )
//{
//
// if (temp_sense[0].state==STATE_OPEN_VALVE)
// {
// GPIOC->ODR|=1<<14;
// }
// else
// if (temp_sense[0].state==STATE_CLOSE_VALVE)
// {
// GPIOC->ODR&=~(1<<14);
// }
//
// return 1;
//
//}
}
if (init_sens || flag->init_tsens)
{
init_sens = 0;
flag->init_tsens = 0;
//Dallas_BusFirstInit(&htim1);
DS18B20_Search(&DS, &OW) ;
reinit_t_sens();
MB_DATA->InRegs.num_Tsens = hdallas->onewire->RomCnt;
}
}
//void init_all_T_sense(void)
//{
// //ds_search_devices();
// for(int i=0;i<hdallas.onewire->RomCnt;i++)
//{
// temp_sense[i].id[0]=roms[i][0]<<0|roms[i][1]<<8|roms[i][2]<<16|roms[i][3]<<24;
// temp_sense[i].id[1]=roms[i][4]<<0|roms[i][5]<<8|roms[i][6]<<16|roms[i][7]<<24;
// temp_sense[i].count =i+1;
// temp_sense[i].location=1;
// temp_sense[i].t_open=22;
// temp_sense[i].t_close=18;
// temp_sense[i].status_T_sense=1;
//}
//}
void reinit_t_sens(void)
{
for ( int i = 0; i < hdallas.onewire->RomCnt; i++)
{
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> ROM-<2D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
//sens[i].Init.init_func = &Dallas_SensorInitByROM;
// sens[i].Init.InitParam.ROM = rom_address;
sens[i].Init.InitParam.Ind = i;
sens[i].Init.init_func = &Dallas_SensorInitByInd;
sens[i].Init.Resolution = DALLAS_CONFIG_9_BITS;
MB_DATA.HoldRegs.set_Temp[i] = sens[i].set_temp = 20.;
MB_DATA.HoldRegs.set_hyst[i] = sens[i].hyst = 1;
Dallas_AddNewSensors(&hdallas, &sens[i]);
}
}
FuncStat packStruct(MB_DataStructureTypeDef* MB_DATA, int sizeARR)
{
for(int i = 0; i < sizeARR; i++)
{
for(int sens_num = 0; sens_num < hdallas.onewire->RomCnt; sens_num++)
{
switch(sens_num)
{
case 0:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp1_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 1:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp2_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 2:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp3_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 3:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp4_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 4:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp5_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 5:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp6_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 6:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp7_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 7:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp8_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 8:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp9_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 9:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp10_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 10:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp11_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 11:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp12_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 12:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp13_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 13:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp14_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 14:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp15_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 15:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp16_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
}
}
}
return FuncOK;
}
FuncStat Field_modbus(MB_DataStructureTypeDef* MB_DATA, Flags_TypeDef* flag)
{
MB_DATA->InRegs.ID = *hdallas.ds_devices;
flag->init_tsens = MB_DATA->Coils.init_Tsens;
packStruct(MB_DATA, MAX_SENSE / 16);
if (_debug_init || MB_DATA->Coils.init_param)
{
_debug_init = 0;
MB_DATA->Coils.init_param = 0;
for(int i = 0; i < hdallas.onewire->RomCnt; i++)
{
sens[i].set_temp = MB_DATA->HoldRegs.set_Temp[i];
sens[i].hyst = MB_DATA->HoldRegs.set_hyst[i];
}
}
return FuncOK;
};
FuncStat value_control(void )
{
for(int i = 0; i < hdallas.onewire->RomCnt; i++)
{
if (sens[i].temperature < sens[i].set_temp - sens[i].hyst)
{
MB_DATA.Coils.relay_struct_off.all |= 1 << i;
MB_DATA.Coils.relay_struct_on.all &= ~(1 << i);
}
else
if (sens[i].temperature > sens[i].set_temp + sens[i].hyst)
{
MB_DATA.Coils.relay_struct_off.all &= ~(1 << i);
MB_DATA.Coils.relay_struct_on.all |= 1 << i;
}
else
if (sens[i].temperature == sens[i].set_temp )
{
MB_DATA.Coils.relay_struct_on.all &= ~(1 << i);
MB_DATA.Coils.relay_struct_off.all &= ~(1 << i);
}
}
return FuncOK;
}
uint16_t handle_valves(TEMP_TypeDef* temp_sense[MAX_SENSE] )
{
if (temp_sense[0]->state == STATE_OPEN_VALVE)
{
GPIOC->ODR |= 1 << 14;
}
else if (temp_sense[0]->state == STATE_CLOSE_VALVE)
{
GPIOC->ODR &= ~(1 << 14);
}
return 1;
}
void init_setpoint_all_T_sense(TEMP_TypeDef* temp_sense, int size_array)
{
//ds_search_devices();
for(int i = 0; i < size_array ; i++)
{
temp_sense[i].id[0] = roms[i][0] << 0 | roms[i][1] << 8 | roms[i][2] << 16 | roms[i][3] << 24;
temp_sense[i].id[1] = roms[i][4] << 0 | roms[i][5] << 8 | roms[i][6] << 16 | roms[i][7] << 24;
temp_sense[i].count = i + 1;
temp_sense[i].location = 1;
temp_sense[i].t_open = 22;
temp_sense[i].t_close = 18;
temp_sense[i].status_T_sense = 1;
}
}
/* USER CODE END 4 */
/**
@@ -379,15 +508,16 @@ void led_blink(GPIO_TypeDef *GPIOx,uint16_t GPIO_Pin,uint8_t iter,uint16_t delay
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM3) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM3)
{
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
/* USER CODE END Callback 1 */
}
/**
@@ -396,16 +526,15 @@ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
@@ -415,9 +544,9 @@ void Error_Handler(void)
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

View File

@@ -0,0 +1,540 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "can.h"
#include "i2c.h"
#include "rtc.h"
#include "spi.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "dallas_tools.h"
#include "def.h"
#include <stdio.h>
#include "modbus.h"
#include "eeprom_emul.h"
#include "stdio.h"
#include "flash_ring.h"
#include "string.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
uint16_t iter, cnt = 5;
uint8_t init_retries = 5;
uint8_t ralay_5v_on_var = 0;
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
float temperature;
uint8_t roms[MAX_DEVICES][8];
Flags_TypeDef flag;
//extern uint8_t devices_found ;
uint8_t _debug_init = 0;
TEMP_TypeDef temp_sense[30];
float set_temp_old[30];
char rx_buffer[64];
uint8_t rx_index = 0;
char command_ready = 0;
uint8_t uart_byte = 0;
uint8_t first_in = 1;
DALLAS_SensorHandleTypeDef sens[30];
int init_sens = 0;
FlashRecord_t* record;
uint8_t flash_buff[RECORD_SIZE-4];
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
int last_page_addr=LAST_PAGE_ADDR;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM1_Init();
MX_USART1_UART_Init();
MX_TIM2_Init();
MX_ADC1_Init();
MX_CAN_Init();
MX_I2C1_Init();
MX_RTC_Init();
MX_SPI1_Init();
/* USER CODE BEGIN 2 */
led_blink(GPIOC, 13, rest_iter, reset_blink_delay);
MODBUS_FirstInit(&hmodbus1, &mb_huart, &mb_htim);
MODBUS_Config(&hmodbus1, MODBUS_DEVICE_ID, MODBUS_TIMEOUT, MODBUS_MODE_SLAVE);
// Запуск приема Modbus
MODBUS_SlaveStart(&hmodbus1, NULL);
uint8_t uart_byte = 0;
Dallas_BusFirstInit(&htim1);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>)
reinit_t_sens();
init_setpoint_all_T_sense(temp_sense, hdallas.onewire->RomCnt);
MB_DATA.InRegs.num_Tsens = hdallas.onewire->RomCnt;
BufferState_t buffer_state = buffer_init();
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if (MB_DATA.Coils.relay_struct[0].state_val_bit.Temp11_relay_isOn)
{
MB_DATA.Coils.relay_struct[0].state_val_bit.Temp11_relay_isOn=0;
BufferState_t state = buffer_init();
uint32_t idx = (state.write_index ) % RECORDS_PER_PAGE;
FlashRecord_t* record = buffer_read_record(idx);
}
if (MB_DATA.Coils.relay_struct[0].state_val_bit.Temp10_relay_isOn)
{
MB_DATA.Coils.relay_struct[0].state_val_bit.Temp10_relay_isOn = 0;
FlashRecord_t new_record;
new_record.timestamp = HAL_GetTick();
memset(new_record.data, (uint8_t)*flash_buff, sizeof(new_record.data));
HAL_StatusTypeDef status = buffer_write_record(&new_record, &buffer_state);
if (status == HAL_OK)
{
// printf("Record written successfully\n");
GPIOC->ODR|=1<<13;
}
}
temp_sense[0].t_close = 1;
Field_modbus(&MB_DATA, &flag);
Check_Tconnect(&MB_DATA, &flag, &hdallas, 0);
value_control();
init_setpoint_all_T_sense(temp_sense, hdallas.onewire->RomCnt);
// handle_valves(temp_sense[]);
Dallas_StartConvertTAll(&hdallas, DALLAS_WAIT_BUS, 0);
for(int i = 0; i < hdallas.onewire->RomCnt; i++)
{
if(sens[i].isLost)
{
sens[i].lost_cnt ++;
}
Dallas_ReadTemperature(&sens[i]);
MB_DATA.InRegs.sens_Temp[i] = sens[i].temperature * 10;
/////////////////////////заменить на define ralay_5v_on_var GPIOA->ODR|=1<<10;
ralay_5v_on_var = MB_DATA.Coils.coils[1].state_val_bit.state_val_05;
if (ralay_5v_on_var)
{
GPIOA->ODR |= 1 << 10;
}
else
{
GPIOA->ODR &= ~(1 << 10);
}
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
//iwdg_refresh();
//HAL_Delay(200);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC | RCC_PERIPHCLK_ADC;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void iwdg_refresh(void)
{
IWDG->KR = 0xAAAA; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
}
void led_blink(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, uint8_t iter, uint16_t delay)
{
for(int i = 0; i < iter; i++)
{
GPIOx->ODR ^= (1 << GPIO_Pin);
HAL_Delay(delay);
}
}
void Check_Tconnect(MB_DataStructureTypeDef* MB_DATA, Flags_TypeDef* flag, DALLAS_HandleTypeDef* hdallas, int a[0])
{
for(int i = 0; i < hdallas->onewire->RomCnt; i++)
{
if(sens[i].isLost)
{
//init_sens=1;
}
}
if (init_sens || flag->init_tsens)
{
init_sens = 0;
flag->init_tsens = 0;
//Dallas_BusFirstInit(&htim1);
DS18B20_Search(&DS, &OW) ;
reinit_t_sens();
MB_DATA->InRegs.num_Tsens = hdallas->onewire->RomCnt;
}
}
void reinit_t_sens(void)
{
for ( int i = 0; i < hdallas.onewire->RomCnt; i++)
{
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> ROM-<2D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
//sens[i].Init.init_func = &Dallas_SensorInitByROM;
// sens[i].Init.InitParam.ROM = rom_address;
sens[i].Init.InitParam.Ind = i;
sens[i].Init.init_func = &Dallas_SensorInitByInd;
sens[i].Init.Resolution = DALLAS_CONFIG_9_BITS;
MB_DATA.HoldRegs.set_Temp[i] = sens[i].set_temp = 20.;
MB_DATA.HoldRegs.set_hyst[i] = sens[i].hyst = 1;
Dallas_AddNewSensors(&hdallas, &sens[i]);
}
}
FuncStat packStruct(MB_DataStructureTypeDef* MB_DATA, int sizeARR)
{
for(int i = 0; i < sizeARR; i++)
{
for(int sens_num = 0; sens_num < hdallas.onewire->RomCnt; sens_num++)
{
switch(sens_num)
{
case 0:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp1_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 1:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp2_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 2:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp3_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 3:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp4_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 4:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp5_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 5:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp6_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 6:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp7_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 7:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp8_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 8:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp9_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 9:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp10_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 10:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp11_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 11:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp12_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 12:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp13_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 13:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp14_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 14:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp15_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
case 15:
MB_DATA->Coils.status_tSens[i].state_val_bit.Temp16_isConnected = sens[i * 16 + sens_num ].isConnected;
break;
}
}
}
return FuncOK;
}
FuncStat Field_modbus(MB_DataStructureTypeDef* MB_DATA, Flags_TypeDef* flag)
{
MB_DATA->InRegs.ID = *hdallas.ds_devices;
flag->init_tsens = MB_DATA->Coils.init_Tsens;
packStruct(MB_DATA, MAX_SENSE / 16);
if (_debug_init || MB_DATA->Coils.init_param)
{
_debug_init = 0;
MB_DATA->Coils.init_param = 0;
for(int i = 0; i < hdallas.onewire->RomCnt; i++)
{
sens[i].set_temp = MB_DATA->HoldRegs.set_Temp[i];
sens[i].hyst = MB_DATA->HoldRegs.set_hyst[i];
}
}
return FuncOK;
};
FuncStat value_control(void )
{
for(int i = 0; i < hdallas.onewire->RomCnt; i++)
{
if (sens[i].temperature < sens[i].set_temp - sens[i].hyst)
{
MB_DATA.Coils.coils[0].all |= 1 << i;
MB_DATA.Coils.coils[1].all &= ~(1 << i);
}
else
if (sens[i].temperature > sens[i].set_temp + sens[i].hyst)
{
MB_DATA.Coils.coils[0].all &= ~(1 << i);
MB_DATA.Coils.coils[1].all |= 1 << i;
}
}
return FuncOK;
}
uint16_t handle_valves(TEMP_TypeDef* temp_sense[MAX_SENSE] )
{
if (temp_sense[0]->state == STATE_OPEN_VALVE)
{
GPIOC->ODR |= 1 << 14;
}
else if (temp_sense[0]->state == STATE_CLOSE_VALVE)
{
GPIOC->ODR &= ~(1 << 14);
}
return 1;
}
void init_setpoint_all_T_sense(TEMP_TypeDef* temp_sense, int size_array)
{
//ds_search_devices();
for(int i = 0; i < size_array ; i++)
{
temp_sense[i].id[0] = roms[i][0] << 0 | roms[i][1] << 8 | roms[i][2] << 16 | roms[i][3] << 24;
temp_sense[i].id[1] = roms[i][4] << 0 | roms[i][5] << 8 | roms[i][6] << 16 | roms[i][7] << 24;
temp_sense[i].count = i + 1;
temp_sense[i].location = 1;
temp_sense[i].t_open = 22;
temp_sense[i].t_close = 18;
temp_sense[i].status_T_sense = 1;
}
}
/* USER CODE END 4 */
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM3 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM3)
{
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

View File

@@ -53,7 +53,7 @@ volatile uint32_t *config_reg = (OW_Pin_Numb < 8) ? &(OW->DataPort->CRL) : &(OW-
}
HAL_GPIO_Init(OW->DataPort, &GPIO_InitStruct);
#endif
#endif
#endif
}
/**
@@ -98,7 +98,7 @@ uint8_t OneWire_Pin_Read(OneWire_t* OW)
#else
#ifdef LL_Driver
return ((OW->DataPort->IDR & OW->DataPin) != 0x00U) ? 1 : 0;
#else6
#else
return HAL_GPIO_ReadPin(OW->DataPort, OW->DataPin);
#endif
#endif

View File

@@ -45,7 +45,7 @@ void MX_RTC_Init(void)
*/
hrtc.Instance = RTC;
hrtc.Init.AsynchPrediv = RTC_AUTO_1_SECOND;
hrtc.Init.OutPut = RTC_OUTPUTSOURCE_SECOND;
hrtc.Init.OutPut = RTC_OUTPUTSOURCE_NONE;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
@@ -57,24 +57,23 @@ void MX_RTC_Init(void)
/** Initialize RTC and set the Time and Date
*/
// sTime.Hours = 0x0;
// sTime.Minutes = 0x0;
// sTime.Seconds = 0x0;
sTime.Hours = 0x0;
sTime.Minutes = 0x0;
sTime.Seconds = 0x0;
// // if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
// {
// Error_Handler();
// }
// DateToUpdate.WeekDay = RTC_WEEKDAY_MONDAY;
// DateToUpdate.Month = RTC_MONTH_JANUARY;
// DateToUpdate.Date = 0x1;
// DateToUpdate.Year = 0x0;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
DateToUpdate.WeekDay = RTC_WEEKDAY_MONDAY;
DateToUpdate.Month = RTC_MONTH_JANUARY;
DateToUpdate.Date = 0x1;
DateToUpdate.Year = 0x0;
// if (HAL_RTC_SetDate(&hrtc, &DateToUpdate, RTC_FORMAT_BCD) != HAL_OK)
// {
// Error_Handler();
// }
if (HAL_RTC_SetDate(&hrtc, &DateToUpdate, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC_Init 2 */
@@ -120,7 +119,7 @@ void HAL_RTC_MspDeInit(RTC_HandleTypeDef* rtcHandle)
/* USER CODE BEGIN RTC_MspDeInit 1 */
/* USER CODE END RTC_MspDeInit 1 */
}
}
}
/* USER CODE BEGIN 1 */

View File

@@ -44,7 +44,7 @@ void MX_SPI1_Init(void)
hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
hspi1.Init.NSS = SPI_NSS_SOFT;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;

View File

@@ -1,4 +1,3 @@
/* USER CODE BEGIN Header */
/**
******************************************************************************

View File

@@ -46,12 +46,15 @@ HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
uint32_t uwPrescalerValue = 0U;
uint32_t pFLatency;
HAL_StatusTypeDef status = HAL_OK;
/* Enable TIM3 clock */
__HAL_RCC_TIM3_CLK_ENABLE();
/* Get clock configuration */
HAL_RCC_GetClockConfig(&clkconfig, &pFLatency);
/* Get APB1 prescaler */
uwAPB1Prescaler = clkconfig.APB1CLKDivider;
/* Compute TIM3 clock */
@@ -71,12 +74,11 @@ HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
htim3.Instance = TIM3;
/* Initialize TIMx peripheral as follow:
+ Period = [(TIM3CLK/1000) - 1]. to have a (1/1000) s time base.
+ Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.
+ ClockDivision = 0
+ Counter direction = Up
*/
* Period = [(TIM3CLK/1000) - 1]. to have a (1/1000) s time base.
* Prescaler = (uwTimclock/1000000 - 1) to have a 1MHz counter clock.
* ClockDivision = 0
* Counter direction = Up
*/
htim3.Init.Period = (1000000U / 1000U) - 1U;
htim3.Init.Prescaler = uwPrescalerValue;
htim3.Init.ClockDivision = 0;

View File

@@ -22,7 +22,7 @@
#include "stm32f1xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "rs_message.h"
#include "modbus.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
@@ -281,11 +281,12 @@ void TIM1_CC_IRQHandler(void)
void TIM2_IRQHandler(void)
{
/* USER CODE BEGIN TIM2_IRQn 0 */
RS_TIM_Handler(&hmodbus1);
return;
/* USER CODE END TIM2_IRQn 0 */
HAL_TIM_IRQHandler(&htim2);
/* USER CODE BEGIN TIM2_IRQn 1 */
RS_TIM_Handler(&hmodbus1);
//RS_TIM_Handler(&hmodbus1);
/* USER CODE END TIM2_IRQn 1 */
}
@@ -313,11 +314,12 @@ static uint8_t first_in=1;
void USART1_IRQHandler(void)
{
/* USER CODE BEGIN USART1_IRQn 0 */
RS_UART_Handler(&hmodbus1);
return;
/* USER CODE END USART1_IRQn 0 */
HAL_UART_IRQHandler(&huart1);
/* USER CODE BEGIN USART1_IRQn 1 */
RS_UART_Handler(&hmodbus1);
//RS_UART_Handler(&hmodbus1);
/* USER CODE END USART1_IRQn 1 */

View File

@@ -83,7 +83,7 @@ void MX_TIM2_Init(void)
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 7199;
htim2.Init.Prescaler = 72-1;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

View File

@@ -36,7 +36,7 @@ void MX_USART1_UART_Init(void)
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
huart1.ReceptionType=HAL_UART_RECEPTION_TOIDLE;
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;

View File

@@ -1,6 +1,6 @@
/**
******************************************************************************
* @file stm32f103x6.h
* @file stm32f103xb.h
* @author MCD Application Team
* @brief CMSIS Cortex-M3 Device Peripheral Access Layer Header File.
* This file contains all the peripheral register's definitions, bits
@@ -29,12 +29,12 @@
* @{
*/
/** @addtogroup stm32f103x6
/** @addtogroup stm32f103xb
* @{
*/
#ifndef __STM32F103x6_H
#define __STM32F103x6_H
#ifndef __STM32F103xB_H
#define __STM32F103xB_H
#ifdef __cplusplus
extern "C" {
@@ -109,11 +109,16 @@ typedef enum
TIM1_CC_IRQn = 27, /*!< TIM1 Capture Compare Interrupt */
TIM2_IRQn = 28, /*!< TIM2 global Interrupt */
TIM3_IRQn = 29, /*!< TIM3 global Interrupt */
TIM4_IRQn = 30, /*!< TIM4 global Interrupt */
I2C1_EV_IRQn = 31, /*!< I2C1 Event Interrupt */
I2C1_ER_IRQn = 32, /*!< I2C1 Error Interrupt */
I2C2_EV_IRQn = 33, /*!< I2C2 Event Interrupt */
I2C2_ER_IRQn = 34, /*!< I2C2 Error Interrupt */
SPI1_IRQn = 35, /*!< SPI1 global Interrupt */
SPI2_IRQn = 36, /*!< SPI2 global Interrupt */
USART1_IRQn = 37, /*!< USART1 global Interrupt */
USART2_IRQn = 38, /*!< USART2 global Interrupt */
USART3_IRQn = 39, /*!< USART3 global Interrupt */
EXTI15_10_IRQn = 40, /*!< External Line[15:10] Interrupts */
RTC_Alarm_IRQn = 41, /*!< RTC Alarm through EXTI Line Interrupt */
USBWakeUp_IRQn = 42, /*!< USB Device WakeUp from suspend through EXTI Line Interrupt */
@@ -565,7 +570,7 @@ typedef struct
#define FLASH_BASE 0x08000000UL /*!< FLASH base address in the alias region */
#define FLASH_BANK1_END 0x08007FFFUL /*!< FLASH END address of bank1 */
#define FLASH_BANK1_END 0x0801FFFFUL /*!< FLASH END address of bank1 */
#define SRAM_BASE 0x20000000UL /*!< SRAM base address in the alias region */
#define PERIPH_BASE 0x40000000UL /*!< Peripheral base address in the alias region */
@@ -580,11 +585,15 @@ typedef struct
#define TIM2_BASE (APB1PERIPH_BASE + 0x00000000UL)
#define TIM3_BASE (APB1PERIPH_BASE + 0x00000400UL)
#define TIM4_BASE (APB1PERIPH_BASE + 0x00000800UL)
#define RTC_BASE (APB1PERIPH_BASE + 0x00002800UL)
#define WWDG_BASE (APB1PERIPH_BASE + 0x00002C00UL)
#define IWDG_BASE (APB1PERIPH_BASE + 0x00003000UL)
#define SPI2_BASE (APB1PERIPH_BASE + 0x00003800UL)
#define USART2_BASE (APB1PERIPH_BASE + 0x00004400UL)
#define USART3_BASE (APB1PERIPH_BASE + 0x00004800UL)
#define I2C1_BASE (APB1PERIPH_BASE + 0x00005400UL)
#define I2C2_BASE (APB1PERIPH_BASE + 0x00005800UL)
#define CAN1_BASE (APB1PERIPH_BASE + 0x00006400UL)
#define BKP_BASE (APB1PERIPH_BASE + 0x00006C00UL)
#define PWR_BASE (APB1PERIPH_BASE + 0x00007000UL)
@@ -594,6 +603,7 @@ typedef struct
#define GPIOB_BASE (APB2PERIPH_BASE + 0x00000C00UL)
#define GPIOC_BASE (APB2PERIPH_BASE + 0x00001000UL)
#define GPIOD_BASE (APB2PERIPH_BASE + 0x00001400UL)
#define GPIOE_BASE (APB2PERIPH_BASE + 0x00001800UL)
#define ADC1_BASE (APB2PERIPH_BASE + 0x00002400UL)
#define ADC2_BASE (APB2PERIPH_BASE + 0x00002800UL)
#define TIM1_BASE (APB2PERIPH_BASE + 0x00002C00UL)
@@ -636,11 +646,15 @@ typedef struct
#define TIM2 ((TIM_TypeDef *)TIM2_BASE)
#define TIM3 ((TIM_TypeDef *)TIM3_BASE)
#define TIM4 ((TIM_TypeDef *)TIM4_BASE)
#define RTC ((RTC_TypeDef *)RTC_BASE)
#define WWDG ((WWDG_TypeDef *)WWDG_BASE)
#define IWDG ((IWDG_TypeDef *)IWDG_BASE)
#define SPI2 ((SPI_TypeDef *)SPI2_BASE)
#define USART2 ((USART_TypeDef *)USART2_BASE)
#define USART3 ((USART_TypeDef *)USART3_BASE)
#define I2C1 ((I2C_TypeDef *)I2C1_BASE)
#define I2C2 ((I2C_TypeDef *)I2C2_BASE)
#define USB ((USB_TypeDef *)USB_BASE)
#define CAN1 ((CAN_TypeDef *)CAN1_BASE)
#define BKP ((BKP_TypeDef *)BKP_BASE)
@@ -651,6 +665,7 @@ typedef struct
#define GPIOB ((GPIO_TypeDef *)GPIOB_BASE)
#define GPIOC ((GPIO_TypeDef *)GPIOC_BASE)
#define GPIOD ((GPIO_TypeDef *)GPIOD_BASE)
#define GPIOE ((GPIO_TypeDef *)GPIOE_BASE)
#define ADC1 ((ADC_TypeDef *)ADC1_BASE)
#define ADC2 ((ADC_TypeDef *)ADC2_BASE)
#define ADC12_COMMON ((ADC_Common_TypeDef *)ADC1_BASE)
@@ -1185,6 +1200,9 @@ typedef struct
#define RCC_APB2RSTR_USART1RST RCC_APB2RSTR_USART1RST_Msk /*!< USART1 reset */
#define RCC_APB2RSTR_IOPERST_Pos (6U)
#define RCC_APB2RSTR_IOPERST_Msk (0x1UL << RCC_APB2RSTR_IOPERST_Pos) /*!< 0x00000040 */
#define RCC_APB2RSTR_IOPERST RCC_APB2RSTR_IOPERST_Msk /*!< I/O port E reset */
@@ -1217,6 +1235,18 @@ typedef struct
#define RCC_APB1RSTR_PWRRST_Msk (0x1UL << RCC_APB1RSTR_PWRRST_Pos) /*!< 0x10000000 */
#define RCC_APB1RSTR_PWRRST RCC_APB1RSTR_PWRRST_Msk /*!< Power interface reset */
#define RCC_APB1RSTR_TIM4RST_Pos (2U)
#define RCC_APB1RSTR_TIM4RST_Msk (0x1UL << RCC_APB1RSTR_TIM4RST_Pos) /*!< 0x00000004 */
#define RCC_APB1RSTR_TIM4RST RCC_APB1RSTR_TIM4RST_Msk /*!< Timer 4 reset */
#define RCC_APB1RSTR_SPI2RST_Pos (14U)
#define RCC_APB1RSTR_SPI2RST_Msk (0x1UL << RCC_APB1RSTR_SPI2RST_Pos) /*!< 0x00004000 */
#define RCC_APB1RSTR_SPI2RST RCC_APB1RSTR_SPI2RST_Msk /*!< SPI 2 reset */
#define RCC_APB1RSTR_USART3RST_Pos (18U)
#define RCC_APB1RSTR_USART3RST_Msk (0x1UL << RCC_APB1RSTR_USART3RST_Pos) /*!< 0x00040000 */
#define RCC_APB1RSTR_USART3RST RCC_APB1RSTR_USART3RST_Msk /*!< USART 3 reset */
#define RCC_APB1RSTR_I2C2RST_Pos (22U)
#define RCC_APB1RSTR_I2C2RST_Msk (0x1UL << RCC_APB1RSTR_I2C2RST_Pos) /*!< 0x00400000 */
#define RCC_APB1RSTR_I2C2RST RCC_APB1RSTR_I2C2RST_Msk /*!< I2C 2 reset */
#define RCC_APB1RSTR_USBRST_Pos (23U)
#define RCC_APB1RSTR_USBRST_Msk (0x1UL << RCC_APB1RSTR_USBRST_Pos) /*!< 0x00800000 */
@@ -1279,6 +1309,9 @@ typedef struct
#define RCC_APB2ENR_USART1EN RCC_APB2ENR_USART1EN_Msk /*!< USART1 clock enable */
#define RCC_APB2ENR_IOPEEN_Pos (6U)
#define RCC_APB2ENR_IOPEEN_Msk (0x1UL << RCC_APB2ENR_IOPEEN_Pos) /*!< 0x00000040 */
#define RCC_APB2ENR_IOPEEN RCC_APB2ENR_IOPEEN_Msk /*!< I/O port E clock enable */
@@ -1311,6 +1344,18 @@ typedef struct
#define RCC_APB1ENR_PWREN_Msk (0x1UL << RCC_APB1ENR_PWREN_Pos) /*!< 0x10000000 */
#define RCC_APB1ENR_PWREN RCC_APB1ENR_PWREN_Msk /*!< Power interface clock enable */
#define RCC_APB1ENR_TIM4EN_Pos (2U)
#define RCC_APB1ENR_TIM4EN_Msk (0x1UL << RCC_APB1ENR_TIM4EN_Pos) /*!< 0x00000004 */
#define RCC_APB1ENR_TIM4EN RCC_APB1ENR_TIM4EN_Msk /*!< Timer 4 clock enable */
#define RCC_APB1ENR_SPI2EN_Pos (14U)
#define RCC_APB1ENR_SPI2EN_Msk (0x1UL << RCC_APB1ENR_SPI2EN_Pos) /*!< 0x00004000 */
#define RCC_APB1ENR_SPI2EN RCC_APB1ENR_SPI2EN_Msk /*!< SPI 2 clock enable */
#define RCC_APB1ENR_USART3EN_Pos (18U)
#define RCC_APB1ENR_USART3EN_Msk (0x1UL << RCC_APB1ENR_USART3EN_Pos) /*!< 0x00040000 */
#define RCC_APB1ENR_USART3EN RCC_APB1ENR_USART3EN_Msk /*!< USART 3 clock enable */
#define RCC_APB1ENR_I2C2EN_Pos (22U)
#define RCC_APB1ENR_I2C2EN_Msk (0x1UL << RCC_APB1ENR_I2C2EN_Pos) /*!< 0x00400000 */
#define RCC_APB1ENR_I2C2EN RCC_APB1ENR_I2C2EN_Msk /*!< I2C 2 clock enable */
#define RCC_APB1ENR_USBEN_Pos (23U)
#define RCC_APB1ENR_USBEN_Msk (0x1UL << RCC_APB1ENR_USBEN_Pos) /*!< 0x00800000 */
@@ -1999,6 +2044,20 @@ typedef struct
#define AFIO_MAPR_USART2_REMAP_Msk (0x1UL << AFIO_MAPR_USART2_REMAP_Pos) /*!< 0x00000008 */
#define AFIO_MAPR_USART2_REMAP AFIO_MAPR_USART2_REMAP_Msk /*!< USART2 remapping */
#define AFIO_MAPR_USART3_REMAP_Pos (4U)
#define AFIO_MAPR_USART3_REMAP_Msk (0x3UL << AFIO_MAPR_USART3_REMAP_Pos) /*!< 0x00000030 */
#define AFIO_MAPR_USART3_REMAP AFIO_MAPR_USART3_REMAP_Msk /*!< USART3_REMAP[1:0] bits (USART3 remapping) */
#define AFIO_MAPR_USART3_REMAP_0 (0x1UL << AFIO_MAPR_USART3_REMAP_Pos) /*!< 0x00000010 */
#define AFIO_MAPR_USART3_REMAP_1 (0x2UL << AFIO_MAPR_USART3_REMAP_Pos) /*!< 0x00000020 */
/* USART3_REMAP configuration */
#define AFIO_MAPR_USART3_REMAP_NOREMAP 0x00000000U /*!< No remap (TX/PB10, RX/PB11, CK/PB12, CTS/PB13, RTS/PB14) */
#define AFIO_MAPR_USART3_REMAP_PARTIALREMAP_Pos (4U)
#define AFIO_MAPR_USART3_REMAP_PARTIALREMAP_Msk (0x1UL << AFIO_MAPR_USART3_REMAP_PARTIALREMAP_Pos) /*!< 0x00000010 */
#define AFIO_MAPR_USART3_REMAP_PARTIALREMAP AFIO_MAPR_USART3_REMAP_PARTIALREMAP_Msk /*!< Partial remap (TX/PC10, RX/PC11, CK/PC12, CTS/PB13, RTS/PB14) */
#define AFIO_MAPR_USART3_REMAP_FULLREMAP_Pos (4U)
#define AFIO_MAPR_USART3_REMAP_FULLREMAP_Msk (0x3UL << AFIO_MAPR_USART3_REMAP_FULLREMAP_Pos) /*!< 0x00000030 */
#define AFIO_MAPR_USART3_REMAP_FULLREMAP AFIO_MAPR_USART3_REMAP_FULLREMAP_Msk /*!< Full remap (TX/PD8, RX/PD9, CK/PD10, CTS/PD11, RTS/PD12) */
#define AFIO_MAPR_TIM1_REMAP_Pos (6U)
#define AFIO_MAPR_TIM1_REMAP_Msk (0x3UL << AFIO_MAPR_TIM1_REMAP_Pos) /*!< 0x000000C0 */
@@ -2048,6 +2107,9 @@ typedef struct
#define AFIO_MAPR_TIM3_REMAP_FULLREMAP_Msk (0x3UL << AFIO_MAPR_TIM3_REMAP_FULLREMAP_Pos) /*!< 0x00000C00 */
#define AFIO_MAPR_TIM3_REMAP_FULLREMAP AFIO_MAPR_TIM3_REMAP_FULLREMAP_Msk /*!< Full remap (CH1/PC6, CH2/PC7, CH3/PC8, CH4/PC9) */
#define AFIO_MAPR_TIM4_REMAP_Pos (12U)
#define AFIO_MAPR_TIM4_REMAP_Msk (0x1UL << AFIO_MAPR_TIM4_REMAP_Pos) /*!< 0x00001000 */
#define AFIO_MAPR_TIM4_REMAP AFIO_MAPR_TIM4_REMAP_Msk /*!< TIM4_REMAP bit (TIM4 remapping) */
#define AFIO_MAPR_CAN_REMAP_Pos (13U)
#define AFIO_MAPR_CAN_REMAP_Msk (0x3UL << AFIO_MAPR_CAN_REMAP_Pos) /*!< 0x00006000 */
@@ -9600,12 +9662,18 @@ typedef struct
#define DBGMCU_CR_DBG_TIM3_STOP_Pos (12U)
#define DBGMCU_CR_DBG_TIM3_STOP_Msk (0x1UL << DBGMCU_CR_DBG_TIM3_STOP_Pos) /*!< 0x00001000 */
#define DBGMCU_CR_DBG_TIM3_STOP DBGMCU_CR_DBG_TIM3_STOP_Msk /*!< TIM3 counter stopped when core is halted */
#define DBGMCU_CR_DBG_TIM4_STOP_Pos (13U)
#define DBGMCU_CR_DBG_TIM4_STOP_Msk (0x1UL << DBGMCU_CR_DBG_TIM4_STOP_Pos) /*!< 0x00002000 */
#define DBGMCU_CR_DBG_TIM4_STOP DBGMCU_CR_DBG_TIM4_STOP_Msk /*!< TIM4 counter stopped when core is halted */
#define DBGMCU_CR_DBG_CAN1_STOP_Pos (14U)
#define DBGMCU_CR_DBG_CAN1_STOP_Msk (0x1UL << DBGMCU_CR_DBG_CAN1_STOP_Pos) /*!< 0x00004000 */
#define DBGMCU_CR_DBG_CAN1_STOP DBGMCU_CR_DBG_CAN1_STOP_Msk /*!< Debug CAN1 stopped when Core is halted */
#define DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT_Pos (15U)
#define DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT_Msk (0x1UL << DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT_Pos) /*!< 0x00008000 */
#define DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT DBGMCU_CR_DBG_I2C1_SMBUS_TIMEOUT_Msk /*!< SMBUS timeout mode stopped when Core is halted */
#define DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT_Pos (16U)
#define DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT_Msk (0x1UL << DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT_Pos) /*!< 0x00010000 */
#define DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT DBGMCU_CR_DBG_I2C2_SMBUS_TIMEOUT_Msk /*!< SMBUS timeout mode stopped when Core is halted */
/******************************************************************************/
/* */
@@ -9778,6 +9846,30 @@ typedef struct
#define FLASH_WRP0_nWRP0_Msk (0xFFUL << FLASH_WRP0_nWRP0_Pos) /*!< 0x0000FF00 */
#define FLASH_WRP0_nWRP0 FLASH_WRP0_nWRP0_Msk /*!< Flash memory write protection complemented option bytes */
/****************** Bit definition for FLASH_WRP1 register ******************/
#define FLASH_WRP1_WRP1_Pos (16U)
#define FLASH_WRP1_WRP1_Msk (0xFFUL << FLASH_WRP1_WRP1_Pos) /*!< 0x00FF0000 */
#define FLASH_WRP1_WRP1 FLASH_WRP1_WRP1_Msk /*!< Flash memory write protection option bytes */
#define FLASH_WRP1_nWRP1_Pos (24U)
#define FLASH_WRP1_nWRP1_Msk (0xFFUL << FLASH_WRP1_nWRP1_Pos) /*!< 0xFF000000 */
#define FLASH_WRP1_nWRP1 FLASH_WRP1_nWRP1_Msk /*!< Flash memory write protection complemented option bytes */
/****************** Bit definition for FLASH_WRP2 register ******************/
#define FLASH_WRP2_WRP2_Pos (0U)
#define FLASH_WRP2_WRP2_Msk (0xFFUL << FLASH_WRP2_WRP2_Pos) /*!< 0x000000FF */
#define FLASH_WRP2_WRP2 FLASH_WRP2_WRP2_Msk /*!< Flash memory write protection option bytes */
#define FLASH_WRP2_nWRP2_Pos (8U)
#define FLASH_WRP2_nWRP2_Msk (0xFFUL << FLASH_WRP2_nWRP2_Pos) /*!< 0x0000FF00 */
#define FLASH_WRP2_nWRP2 FLASH_WRP2_nWRP2_Msk /*!< Flash memory write protection complemented option bytes */
/****************** Bit definition for FLASH_WRP3 register ******************/
#define FLASH_WRP3_WRP3_Pos (16U)
#define FLASH_WRP3_WRP3_Msk (0xFFUL << FLASH_WRP3_WRP3_Pos) /*!< 0x00FF0000 */
#define FLASH_WRP3_WRP3 FLASH_WRP3_WRP3_Msk /*!< Flash memory write protection option bytes */
#define FLASH_WRP3_nWRP3_Pos (24U)
#define FLASH_WRP3_nWRP3_Msk (0xFFUL << FLASH_WRP3_nWRP3_Pos) /*!< 0xFF000000 */
#define FLASH_WRP3_nWRP3 FLASH_WRP3_nWRP3_Msk /*!< Flash memory write protection complemented option bytes */
/**
@@ -9823,7 +9915,8 @@ typedef struct
#define IS_GPIO_ALL_INSTANCE(INSTANCE) (((INSTANCE) == GPIOA) || \
((INSTANCE) == GPIOB) || \
((INSTANCE) == GPIOC) || \
((INSTANCE) == GPIOD))
((INSTANCE) == GPIOD) || \
((INSTANCE) == GPIOE))
/**************************** GPIO Alternate Function Instances ***************/
#define IS_GPIO_AF_INSTANCE(INSTANCE) IS_GPIO_ALL_INSTANCE(INSTANCE)
@@ -9832,7 +9925,8 @@ typedef struct
#define IS_GPIO_LOCK_INSTANCE(INSTANCE) IS_GPIO_ALL_INSTANCE(INSTANCE)
/******************************** I2C Instances *******************************/
#define IS_I2C_ALL_INSTANCE(INSTANCE) ((INSTANCE) == I2C1)
#define IS_I2C_ALL_INSTANCE(INSTANCE) (((INSTANCE) == I2C1) || \
((INSTANCE) == I2C2))
/******************************* SMBUS Instances ******************************/
#define IS_SMBUS_ALL_INSTANCE IS_I2C_ALL_INSTANCE
@@ -9841,86 +9935,102 @@ typedef struct
#define IS_IWDG_ALL_INSTANCE(INSTANCE) ((INSTANCE) == IWDG)
/******************************** SPI Instances *******************************/
#define IS_SPI_ALL_INSTANCE(INSTANCE) ((INSTANCE) == SPI1)
#define IS_SPI_ALL_INSTANCE(INSTANCE) (((INSTANCE) == SPI1) || \
((INSTANCE) == SPI2))
/****************************** START TIM Instances ***************************/
/****************************** TIM Instances *********************************/
#define IS_TIM_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_ADVANCED_INSTANCE(INSTANCE) ((INSTANCE) == TIM1)
#define IS_TIM_CC1_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_CC2_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_CC3_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_CC4_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_CLOCKSOURCE_ETRMODE1_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_CLOCKSOURCE_ETRMODE2_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_CLOCKSOURCE_TIX_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_CLOCKSOURCE_ITRX_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_OCXREF_CLEAR_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_ENCODER_INTERFACE_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_XOR_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_MASTER_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_SLAVE_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_DMABURST_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_BREAK_INSTANCE(INSTANCE)\
((INSTANCE) == TIM1)
@@ -9939,6 +10049,12 @@ typedef struct
((CHANNEL) == TIM_CHANNEL_4))) \
|| \
(((INSTANCE) == TIM3) && \
(((CHANNEL) == TIM_CHANNEL_1) || \
((CHANNEL) == TIM_CHANNEL_2) || \
((CHANNEL) == TIM_CHANNEL_3) || \
((CHANNEL) == TIM_CHANNEL_4))) \
|| \
(((INSTANCE) == TIM4) && \
(((CHANNEL) == TIM_CHANNEL_1) || \
((CHANNEL) == TIM_CHANNEL_2) || \
((CHANNEL) == TIM_CHANNEL_3) || \
@@ -9953,7 +10069,8 @@ typedef struct
#define IS_TIM_COUNTER_MODE_SELECT_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_REPETITION_COUNTER_INSTANCE(INSTANCE)\
((INSTANCE) == TIM1)
@@ -9961,28 +10078,33 @@ typedef struct
#define IS_TIM_CLOCK_DIVISION_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_DMA_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_DMA_CC_INSTANCE(INSTANCE)\
(((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_COMMUTATION_EVENT_INSTANCE(INSTANCE)\
((INSTANCE) == TIM1)
#define IS_TIM_ETR_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_HALL_SENSOR_INTERFACE_INSTANCE(INSTANCE) (((INSTANCE) == TIM1) || \
((INSTANCE) == TIM2) || \
((INSTANCE) == TIM3))
((INSTANCE) == TIM3) || \
((INSTANCE) == TIM4))
#define IS_TIM_32B_COUNTER_INSTANCE(INSTANCE) 0U
@@ -9991,39 +10113,48 @@ typedef struct
/******************** USART Instances : Synchronous mode **********************/
#define IS_USART_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || \
((INSTANCE) == USART2))
((INSTANCE) == USART2) || \
((INSTANCE) == USART3))
/******************** UART Instances : Asynchronous mode **********************/
#define IS_UART_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || \
((INSTANCE) == USART2) )
((INSTANCE) == USART2) || \
((INSTANCE) == USART3))
/******************** UART Instances : Half-Duplex mode **********************/
#define IS_UART_HALFDUPLEX_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || \
((INSTANCE) == USART2) )
((INSTANCE) == USART2) || \
((INSTANCE) == USART3))
/******************** UART Instances : LIN mode **********************/
#define IS_UART_LIN_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || \
((INSTANCE) == USART2) )
((INSTANCE) == USART2) || \
((INSTANCE) == USART3))
/****************** UART Instances : Hardware Flow control ********************/
#define IS_UART_HWFLOW_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || \
((INSTANCE) == USART2) )
((INSTANCE) == USART2) || \
((INSTANCE) == USART3))
/********************* UART Instances : Smard card mode ***********************/
#define IS_SMARTCARD_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || \
((INSTANCE) == USART2) )
((INSTANCE) == USART2) || \
((INSTANCE) == USART3))
/*********************** UART Instances : IRDA mode ***************************/
#define IS_IRDA_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || \
((INSTANCE) == USART2) )
((INSTANCE) == USART2) || \
((INSTANCE) == USART3))
/***************** UART Instances : Multi-Processor mode **********************/
#define IS_UART_MULTIPROCESSOR_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || \
((INSTANCE) == USART2) )
((INSTANCE) == USART2) || \
((INSTANCE) == USART3))
/***************** UART Instances : DMA mode available **********************/
#define IS_UART_DMA_INSTANCE(INSTANCE) (((INSTANCE) == USART1) || \
((INSTANCE) == USART2))
((INSTANCE) == USART2) || \
((INSTANCE) == USART3))
/****************************** RTC Instances *********************************/
#define IS_RTC_ALL_INSTANCE(INSTANCE) ((INSTANCE) == RTC)
@@ -10054,40 +10185,40 @@ typedef struct
/* Aliases for __IRQn */
#define ADC1_IRQn ADC1_2_IRQn
#define TIM9_IRQn TIM1_BRK_IRQn
#define TIM1_BRK_TIM9_IRQn TIM1_BRK_IRQn
#define TIM1_BRK_TIM15_IRQn TIM1_BRK_IRQn
#define TIM9_IRQn TIM1_BRK_IRQn
#define TIM1_TRG_COM_TIM11_IRQn TIM1_TRG_COM_IRQn
#define TIM1_TRG_COM_TIM17_IRQn TIM1_TRG_COM_IRQn
#define TIM1_TRG_COM_TIM11_IRQn TIM1_TRG_COM_IRQn
#define TIM11_IRQn TIM1_TRG_COM_IRQn
#define TIM1_UP_TIM10_IRQn TIM1_UP_IRQn
#define TIM10_IRQn TIM1_UP_IRQn
#define TIM1_UP_TIM10_IRQn TIM1_UP_IRQn
#define TIM1_UP_TIM16_IRQn TIM1_UP_IRQn
#define CEC_IRQn USBWakeUp_IRQn
#define OTG_FS_WKUP_IRQn USBWakeUp_IRQn
#define CEC_IRQn USBWakeUp_IRQn
#define USB_HP_IRQn USB_HP_CAN1_TX_IRQn
#define CAN1_TX_IRQn USB_HP_CAN1_TX_IRQn
#define USB_LP_IRQn USB_LP_CAN1_RX0_IRQn
#define CAN1_RX0_IRQn USB_LP_CAN1_RX0_IRQn
#define USB_LP_IRQn USB_LP_CAN1_RX0_IRQn
/* Aliases for __IRQHandler */
#define ADC1_IRQHandler ADC1_2_IRQHandler
#define TIM9_IRQHandler TIM1_BRK_IRQHandler
#define TIM1_BRK_TIM9_IRQHandler TIM1_BRK_IRQHandler
#define TIM1_BRK_TIM15_IRQHandler TIM1_BRK_IRQHandler
#define TIM9_IRQHandler TIM1_BRK_IRQHandler
#define TIM1_TRG_COM_TIM11_IRQHandler TIM1_TRG_COM_IRQHandler
#define TIM1_TRG_COM_TIM17_IRQHandler TIM1_TRG_COM_IRQHandler
#define TIM1_TRG_COM_TIM11_IRQHandler TIM1_TRG_COM_IRQHandler
#define TIM11_IRQHandler TIM1_TRG_COM_IRQHandler
#define TIM1_UP_TIM10_IRQHandler TIM1_UP_IRQHandler
#define TIM10_IRQHandler TIM1_UP_IRQHandler
#define TIM1_UP_TIM10_IRQHandler TIM1_UP_IRQHandler
#define TIM1_UP_TIM16_IRQHandler TIM1_UP_IRQHandler
#define CEC_IRQHandler USBWakeUp_IRQHandler
#define OTG_FS_WKUP_IRQHandler USBWakeUp_IRQHandler
#define CEC_IRQHandler USBWakeUp_IRQHandler
#define USB_HP_IRQHandler USB_HP_CAN1_TX_IRQHandler
#define CAN1_TX_IRQHandler USB_HP_CAN1_TX_IRQHandler
#define USB_LP_IRQHandler USB_LP_CAN1_RX0_IRQHandler
#define CAN1_RX0_IRQHandler USB_LP_CAN1_RX0_IRQHandler
#define USB_LP_IRQHandler USB_LP_CAN1_RX0_IRQHandler
/**
@@ -10103,7 +10234,7 @@ typedef struct
}
#endif /* __cplusplus */
#endif /* __STM32F103x6_H */
#endif /* __STM32F103xB_H */

View File

@@ -0,0 +1,56 @@
#ifndef EEPROM_EMUL_H
#define EEPROM_EMUL_H
#include "stm32f1xx_hal.h"
// Адреса для эмуляции EEPROM (последние страницы Flash)
#define EEPROM_START_ADDRESS 0x0800F000 // Последний килобайт Flash
#define EEPROM_PAGE_SIZE 1024 // Размер страницы STM32F103
#define EEPROM_SIZE 1024 // Общий размер EEPROM
// Максимальное количество переменных
#define EEPROM_MAX_VARIABLES 64
// Статусы операций
typedef enum {
EEPROM_OK = 0,
EEPROM_ERROR = 1,
EEPROM_INVALID = 2,
EEPROM_FULL = 3
} EEPROM_Status;
// Структура элемента данных
#pragma pack(push, 1)
typedef struct {
uint16_t address; // Адрес переменной (0-EEPROM_MAX_VARIABLES)
uint16_t data; // Данные
uint32_t timestamp; // Временная метка
} EEPROM_Item;
#pragma pack(pop)
typedef struct {
uint8_t data[EEPROM_SIZE]; // Массив для хранения данных
uint16_t head; // Указатель на место записи
uint16_t tail; // Указатель на место чтения
} RingBuffer_t;
// Инициализация EEPROM
EEPROM_Status EEPROM_Init(void);
// Чтение данных
EEPROM_Status EEPROM_Read(uint16_t virt_address, uint16_t* data);
// Запись данных
EEPROM_Status EEPROM_Write(uint16_t virt_address, uint16_t data);
// Массовая запись
EEPROM_Status EEPROM_WriteMultiple(uint16_t virt_address, uint8_t* data, uint16_t size);
// Получение информации о EEPROM
void EEPROM_GetInfo(uint32_t* used, uint32_t* total);
// Полное форматирование
EEPROM_Status EEPROM_Format(void);
#endif

View File

@@ -0,0 +1,31 @@
#ifndef FLASH_RING_H
#define FLASH_RING_H
#include "stm32f1xx_hal.h"
//#define FLASH_PAGE_SIZE 1024
#define NUM_OF_PAGE_EEPROM 2
#define FLASH_START_ADDR 0x08000000
#define FLASH_SIZE (64 * 1024) // для STM32F103C8
#define LAST_PAGE_ADDR (FLASH_START_ADDR + FLASH_SIZE - NUM_OF_PAGE_EEPROM*FLASH_PAGE_SIZE)
#define RECORD_SIZE 255
#define RECORDS_PER_PAGE NUM_OF_PAGE_EEPROM*(FLASH_PAGE_SIZE / RECORD_SIZE) // 10 записей
#pragma pack(push, 1)
typedef struct {
uint32_t timestamp;
uint8_t data[RECORD_SIZE-4]; // 200 - 4 байта timestamp
} FlashRecord_t;
#pragma pack(pop)
typedef struct {
uint32_t write_index; // индекс следующей записи (0-9)
uint8_t initialized; // флаг инициализации
} BufferState_t;
BufferState_t buffer_init(void);
HAL_StatusTypeDef buffer_write_record(FlashRecord_t* record, BufferState_t* state);
HAL_StatusTypeDef erase_flash_page(void) ;
HAL_StatusTypeDef write_flash_record(uint32_t address, FlashRecord_t* record);
FlashRecord_t* buffer_read_record(uint32_t index);
void buffer_get_all_records(FlashRecord_t* records[], uint32_t* count);
#endif // FLASH_RING_H

View File

@@ -0,0 +1,297 @@
//#include "eeprom_emul.h"
#include <string.h>
// Внутренние переменные
static uint32_t eeprom_current_write_address = EEPROM_START_ADDRESS;
static uint8_t eeprom_initialized = 0;
// Прототипы внутренних функций
static EEPROM_Status EEPROM_FindLatestData(uint16_t virt_address, uint16_t* data);
static EEPROM_Status EEPROM_WriteItem(EEPROM_Item* item);
static EEPROM_Status EEPROM_ErasePage(uint32_t address);
static uint32_t EEPROM_FindNextWriteAddress(void);
static uint8_t EEPROM_IsPageErased(uint32_t address);
static uint32_t EEPROM_CalculateCRC(EEPROM_Item* item);
// Инициализация EEPROM
EEPROM_Status EEPROM_Init(void)
{
if (eeprom_initialized)
{
return EEPROM_OK;
}
// Находим следующий адрес для записи
eeprom_current_write_address = EEPROM_FindNextWriteAddress();
// Если вся память заполнена, выполняем сборку мусора (форматирование)
if (eeprom_current_write_address >= EEPROM_START_ADDRESS + EEPROM_SIZE)
{
EEPROM_Format();
}
else
{
eeprom_initialized = 1;
}
return EEPROM_OK;
}
// Чтение данных по виртуальному адресу
EEPROM_Status EEPROM_Read(uint16_t virt_address, uint16_t* data)
{
if (!eeprom_initialized)
{
return EEPROM_ERROR;
}
if (virt_address >= EEPROM_MAX_VARIABLES || data == NULL)
{
return EEPROM_INVALID;
}
return EEPROM_FindLatestData(virt_address, data);
}
// Запись данных по виртуальному адресу
EEPROM_Status EEPROM_Write(uint16_t virt_address, uint16_t data)
{
EEPROM_Item item;
if (!eeprom_initialized)
{
return EEPROM_ERROR;
}
if (virt_address >= EEPROM_MAX_VARIABLES)
{
return EEPROM_INVALID;
}
// Подготавливаем элемент данных
item.address = virt_address;
item.data = data;
item.timestamp = HAL_GetTick(); // Используем системный таймер
// Записываем элемент
return EEPROM_WriteItem(&item);
}
// Поиск последних данных для виртуального адреса
static EEPROM_Status EEPROM_FindLatestData(uint16_t virt_address, uint16_t* data)
{
uint32_t address = EEPROM_START_ADDRESS;
EEPROM_Item current_item;
uint32_t latest_timestamp = 0;
uint16_t latest_data = 0;
uint8_t data_found = 0;
// Сканируем всю область EEPROM
while (address < EEPROM_START_ADDRESS + EEPROM_SIZE)
{
// Читаем элемент
memcpy(&current_item, (void*)address, sizeof(EEPROM_Item));
// Проверяем, является ли это валидными данными
if (current_item.address == virt_address)
{
if (current_item.timestamp >= latest_timestamp)
{
latest_timestamp = current_item.timestamp;
latest_data = current_item.data;
data_found = 1;
}
}
address += sizeof(EEPROM_Item);
// Проверяем конец страницы
if ((address - EEPROM_START_ADDRESS) % EEPROM_PAGE_SIZE == 0)
{
address += (EEPROM_PAGE_SIZE - (sizeof(EEPROM_Item) * 2));
}
}
if (data_found)
{
*data = latest_data;
return EEPROM_OK;
}
return EEPROM_INVALID;
}
// Запись элемента в EEPROM
static EEPROM_Status EEPROM_WriteItem(EEPROM_Item* item)
{
HAL_StatusTypeDef hal_status;
// Проверяем, нужно ли стирать страницу
if ((eeprom_current_write_address - EEPROM_START_ADDRESS) % EEPROM_PAGE_SIZE == 0)
{
if (!EEPROM_IsPageErased(eeprom_current_write_address))
{
if (EEPROM_ErasePage(eeprom_current_write_address) != EEPROM_OK)
{
return EEPROM_ERROR;
}
}
}
// Разблокируем Flash
HAL_FLASH_Unlock();
// Записываем данные по словам (32 бита)
uint32_t* data_ptr = (uint32_t*)item;
for (uint8_t i = 0; i < sizeof(EEPROM_Item) / 4; i++)
{
hal_status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD,
eeprom_current_write_address + (i * 4),
data_ptr[i]);
if (hal_status != HAL_OK)
{
HAL_FLASH_Lock();
return EEPROM_ERROR;
}
}
// Блокируем Flash
HAL_FLASH_Lock();
// Обновляем адрес для следующей записи
eeprom_current_write_address += sizeof(EEPROM_Item);
// Проверяем переполнение
if (eeprom_current_write_address >= EEPROM_START_ADDRESS + EEPROM_SIZE)
{
// Выполняем сборку мусора (в данном случае - форматирование)
EEPROM_Format();
}
return EEPROM_OK;
}
// Стирание страницы Flash
static EEPROM_Status EEPROM_ErasePage(uint32_t address)
{
FLASH_EraseInitTypeDef erase;
uint32_t page_error;
// Определяем номер страницы
uint32_t page = (address - FLASH_BASE) / EEPROM_PAGE_SIZE;
HAL_FLASH_Unlock();
erase.TypeErase = FLASH_TYPEERASE_PAGES;
erase.PageAddress = address;
erase.NbPages = 1;
if (HAL_FLASHEx_Erase(&erase, &page_error) != HAL_OK)
{
HAL_FLASH_Lock();
return EEPROM_ERROR;
}
HAL_FLASH_Lock();
return EEPROM_OK;
}
// Поиск следующего адреса для записи
static uint32_t EEPROM_FindNextWriteAddress(void)
{
uint32_t address = EEPROM_START_ADDRESS;
EEPROM_Item item;
// Ищем первую свободную позицию
while (address < EEPROM_START_ADDRESS + EEPROM_SIZE)
{
memcpy(&item, (void*)address, sizeof(EEPROM_Item));
// Если нашли пустой элемент (все FFFF), это свободная позиция
if (item.address == 0xFFFF && item.data == 0xFFFF && item.timestamp == 0xFFFFFFFF)
{
break;
}
address += sizeof(EEPROM_Item);
// Проверяем границу страницы
if ((address - EEPROM_START_ADDRESS) % EEPROM_PAGE_SIZE == 0)
{
address += (EEPROM_PAGE_SIZE - (sizeof(EEPROM_Item) * 2));
}
}
return address;
}
// Проверка, стерта ли страница
static uint8_t EEPROM_IsPageErased(uint32_t address)
{
uint32_t* check_addr = (uint32_t*)address;
// Проверяем первые несколько слов
for (uint8_t i = 0; i < 8; i++)
{
if (check_addr[i] != 0xFFFFFFFF)
{
return 0;
}
}
return 1;
}
// Полное форматирование EEPROM
EEPROM_Status EEPROM_Format(void)
{
uint32_t address = EEPROM_START_ADDRESS;
// Стираем все страницы, используемые для EEPROM
while (address < EEPROM_START_ADDRESS + EEPROM_SIZE)
{
if (EEPROM_ErasePage(address) != EEPROM_OK)
{
return EEPROM_ERROR;
}
address += EEPROM_PAGE_SIZE;
}
eeprom_current_write_address = EEPROM_START_ADDRESS;
eeprom_initialized = 1;
return EEPROM_OK;
}
// Получение информации об использовании EEPROM
void EEPROM_GetInfo(uint32_t* used, uint32_t* total)
{
uint32_t address = EEPROM_START_ADDRESS;
uint32_t used_bytes = 0;
if (used)
{
// Подсчитываем использованные байты
while (address < EEPROM_START_ADDRESS + EEPROM_SIZE)
{
EEPROM_Item item;
memcpy(&item, (void*)address, sizeof(EEPROM_Item));
if (item.address != 0xFFFF || item.data != 0xFFFF || item.timestamp != 0xFFFFFFFF)
{
used_bytes += sizeof(EEPROM_Item);
}
address += sizeof(EEPROM_Item);
}
*used = used_bytes;
}
if (total)
{
*total = EEPROM_SIZE;
}
}

View File

@@ -0,0 +1,256 @@
#include "eeprom_emul.h"
#include <string.h>
// Внутренние переменные
static uint32_t eeprom_current_write_address = EEPROM_START_ADDRESS;
static uint8_t eeprom_initialized = 0;
// Прототипы внутренних функций
static EEPROM_Status EEPROM_FindLatestData(uint16_t virt_address, uint16_t* data);
static EEPROM_Status EEPROM_WriteItem(EEPROM_Item* item);
static EEPROM_Status EEPROM_ErasePage(uint32_t address);
static uint32_t EEPROM_FindNextWriteAddress(void);
static uint8_t EEPROM_IsPageErased(uint32_t address);
static uint32_t EEPROM_CalculateCRC(EEPROM_Item* item);
// Инициализация EEPROM
EEPROM_Status EEPROM_Init(void) {
if (eeprom_initialized) {
return EEPROM_OK;
}
// Находим следующий адрес для записи
eeprom_current_write_address = EEPROM_FindNextWriteAddress();
// Если вся память заполнена, выполняем сборку мусора (форматирование)
if (eeprom_current_write_address >= EEPROM_START_ADDRESS + EEPROM_SIZE) {
EEPROM_Format();
} else {
eeprom_initialized = 1;
}
return EEPROM_OK;
}
// Чтение данных по виртуальному адресу
EEPROM_Status EEPROM_Read(uint16_t virt_address, uint16_t* data) {
if (!eeprom_initialized) {
return EEPROM_ERROR;
}
if (virt_address >= EEPROM_MAX_VARIABLES || data == NULL) {
return EEPROM_INVALID;
}
return EEPROM_FindLatestData(virt_address, data);
}
// Запись данных по виртуальному адресу
EEPROM_Status EEPROM_Write(uint16_t virt_address, uint16_t data) {
EEPROM_Item item;
if (!eeprom_initialized) {
return EEPROM_ERROR;
}
if (virt_address >= EEPROM_MAX_VARIABLES) {
return EEPROM_INVALID;
}
// Подготавливаем элемент данных
item.address = virt_address;
item.data = data;
item.timestamp = HAL_GetTick(); // Используем системный таймер
// Записываем элемент
return EEPROM_WriteItem(&item);
}
// Поиск последних данных для виртуального адреса
static EEPROM_Status EEPROM_FindLatestData(uint16_t virt_address, uint16_t* data) {
uint32_t address = EEPROM_START_ADDRESS;
EEPROM_Item current_item;
uint32_t latest_timestamp = 0;
uint16_t latest_data = 0;
uint8_t data_found = 0;
// Сканируем всю область EEPROM
while (address < EEPROM_START_ADDRESS + EEPROM_SIZE) {
// Читаем элемент
memcpy(&current_item, (void*)address, sizeof(EEPROM_Item));
// Проверяем, является ли это валидными данными
if (current_item.address == virt_address) {
if (current_item.timestamp >= latest_timestamp) {
latest_timestamp = current_item.timestamp;
latest_data = current_item.data;
data_found = 1;
}
}
address += sizeof(EEPROM_Item);
// Проверяем конец страницы
if ((address - EEPROM_START_ADDRESS) % EEPROM_PAGE_SIZE == 0) {
address += (EEPROM_PAGE_SIZE - (sizeof(EEPROM_Item) * 2));
}
}
if (data_found) {
*data = latest_data;
return EEPROM_OK;
}
return EEPROM_INVALID;
}
// Запись элемента в EEPROM
static EEPROM_Status EEPROM_WriteItem(EEPROM_Item* item) {
HAL_StatusTypeDef hal_status;
// Проверяем, нужно ли стирать страницу
if ((eeprom_current_write_address - EEPROM_START_ADDRESS) % EEPROM_PAGE_SIZE == 0) {
if (!EEPROM_IsPageErased(eeprom_current_write_address)) {
if (EEPROM_ErasePage(eeprom_current_write_address) != EEPROM_OK) {
return EEPROM_ERROR;
}
}
}
// Разблокируем Flash
HAL_FLASH_Unlock();
// Записываем данные по словам (32 бита)
uint32_t* data_ptr = (uint32_t*)item;
for (uint8_t i = 0; i < sizeof(EEPROM_Item) / 4; i++) {
hal_status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD,
eeprom_current_write_address + (i * 4),
data_ptr[i]);
if (hal_status != HAL_OK) {
HAL_FLASH_Lock();
return EEPROM_ERROR;
}
}
// Блокируем Flash
HAL_FLASH_Lock();
// Обновляем адрес для следующей записи
eeprom_current_write_address += sizeof(EEPROM_Item);
// Проверяем переполнение
if (eeprom_current_write_address >= EEPROM_START_ADDRESS + EEPROM_SIZE) {
// Выполняем сборку мусора (в данном случае - форматирование)
EEPROM_Format();
}
return EEPROM_OK;
}
// Стирание страницы Flash
static EEPROM_Status EEPROM_ErasePage(uint32_t address) {
FLASH_EraseInitTypeDef erase;
uint32_t page_error;
// Определяем номер страницы
uint32_t page = (address - FLASH_BASE) / EEPROM_PAGE_SIZE;
HAL_FLASH_Unlock();
erase.TypeErase = FLASH_TYPEERASE_PAGES;
erase.PageAddress = address;
erase.NbPages = 1;
if (HAL_FLASHEx_Erase(&erase, &page_error) != HAL_OK) {
HAL_FLASH_Lock();
return EEPROM_ERROR;
}
HAL_FLASH_Lock();
return EEPROM_OK;
}
// Поиск следующего адреса для записи
static uint32_t EEPROM_FindNextWriteAddress(void) {
uint32_t address = EEPROM_START_ADDRESS;
EEPROM_Item item;
// Ищем первую свободную позицию
while (address < EEPROM_START_ADDRESS + EEPROM_SIZE) {
memcpy(&item, (void*)address, sizeof(EEPROM_Item));
// Если нашли пустой элемент (все FFFF), это свободная позиция
if (item.address == 0xFFFF && item.data == 0xFFFF && item.timestamp == 0xFFFFFFFF) {
break;
}
address += sizeof(EEPROM_Item);
// Проверяем границу страницы
if ((address - EEPROM_START_ADDRESS) % EEPROM_PAGE_SIZE == 0) {
address += (EEPROM_PAGE_SIZE - (sizeof(EEPROM_Item) * 2));
}
}
return address;
}
// Проверка, стерта ли страница
static uint8_t EEPROM_IsPageErased(uint32_t address) {
uint32_t* check_addr = (uint32_t*)address;
// Проверяем первые несколько слов
for (uint8_t i = 0; i < 8; i++) {
if (check_addr[i] != 0xFFFFFFFF) {
return 0;
}
}
return 1;
}
// Полное форматирование EEPROM
EEPROM_Status EEPROM_Format(void) {
uint32_t address = EEPROM_START_ADDRESS;
// Стираем все страницы, используемые для EEPROM
while (address < EEPROM_START_ADDRESS + EEPROM_SIZE) {
if (EEPROM_ErasePage(address) != EEPROM_OK) {
return EEPROM_ERROR;
}
address += EEPROM_PAGE_SIZE;
}
eeprom_current_write_address = EEPROM_START_ADDRESS;
eeprom_initialized = 1;
return EEPROM_OK;
}
// Получение информации об использовании EEPROM
void EEPROM_GetInfo(uint32_t* used, uint32_t* total) {
uint32_t address = EEPROM_START_ADDRESS;
uint32_t used_bytes = 0;
if (used) {
// Подсчитываем использованные байты
while (address < EEPROM_START_ADDRESS + EEPROM_SIZE) {
EEPROM_Item item;
memcpy(&item, (void*)address, sizeof(EEPROM_Item));
if (item.address != 0xFFFF || item.data != 0xFFFF || item.timestamp != 0xFFFFFFFF) {
used_bytes += sizeof(EEPROM_Item);
}
address += sizeof(EEPROM_Item);
}
*used = used_bytes;
}
if (total) {
*total = EEPROM_SIZE;
}
}

View File

@@ -0,0 +1,123 @@
#include "flash_ring.h"
extern int last_page_addr;
BufferState_t buffer_init(void) {
BufferState_t state = {0};
// Ищем последнюю записанную запись
for (int i = 0; i < RECORDS_PER_PAGE; i++) {
uint32_t record_addr = LAST_PAGE_ADDR + (i * RECORD_SIZE);
FlashRecord_t* record = (FlashRecord_t*)record_addr;
// Проверяем валидность записи (не 0xFFFFFFFF)
if (record->timestamp != 0xFFFFFFFF) {
state.write_index = i + 1;
state.initialized = 1;
} else {
break;
}
}
// Если буфер заполнен, начинаем с начала
if (state.write_index >= RECORDS_PER_PAGE) {
state.write_index = 0;
}
return state;
}
HAL_StatusTypeDef buffer_write_record(FlashRecord_t* record, BufferState_t* state) {
HAL_StatusTypeDef status;
// Если нужно стереть страницу (начало нового цикла)
if (state->write_index == 0 && state->initialized) {
status = erase_flash_page();
if (status != HAL_OK) return status;
}
// Записываем данные
uint32_t record_addr = last_page_addr + (state->write_index * RECORD_SIZE);
status = write_flash_record(record_addr, record);
if (status != HAL_OK) return status;
// Обновляем индекс
state->write_index++;
if (state->write_index >= RECORDS_PER_PAGE) {
state->write_index = 0;
}
state->initialized = 1;
return HAL_OK;
}
HAL_StatusTypeDef erase_flash_page(void) {
HAL_FLASH_Unlock();
FLASH_EraseInitTypeDef EraseInit = {
.TypeErase = FLASH_TYPEERASE_PAGES,
.PageAddress = LAST_PAGE_ADDR,
.NbPages = 1
};
uint32_t page_error;
HAL_StatusTypeDef status = HAL_FLASHEx_Erase(&EraseInit, &page_error);
HAL_FLASH_Lock();
return status;
}
// Запись одной записи
HAL_StatusTypeDef write_flash_record(uint32_t address, FlashRecord_t* record) {
HAL_FLASH_Unlock();
HAL_StatusTypeDef status = HAL_OK;
// Записываем данные по 4 байта (слово)
uint32_t* data_ptr = (uint32_t*)record;
uint32_t words_to_write = (RECORD_SIZE + 3) / 4; // округление вверх
for (uint32_t i = 0; i < words_to_write; i++) {
status = HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD,
address + (i * 4),
data_ptr[i]);
if (status != HAL_OK) break;
}
HAL_FLASH_Lock();
return status;
}
// Чтение записи по индексу
FlashRecord_t* buffer_read_record(uint32_t index) {
if (index >= RECORDS_PER_PAGE) return NULL;
uint32_t record_addr = LAST_PAGE_ADDR + (index * RECORD_SIZE);
FlashRecord_t* record = (FlashRecord_t*)record_addr;
// Проверяем что запись не пустая
if (record->timestamp == 0xFFFFFFFF) {
return NULL;
}
return record;
}
// Получение всех записей в порядке от старых к новым
void buffer_get_all_records(FlashRecord_t* records[], uint32_t* count) {
*count = 0;
BufferState_t state = buffer_init();
if (!state.initialized) return;
// Начинаем с текущего write_index (самые старые данные)
for (int i = 0; i < RECORDS_PER_PAGE; i++) {
uint32_t idx = (state.write_index + i) % RECORDS_PER_PAGE;
FlashRecord_t* record = buffer_read_record(idx);
if (record) {
records[(*count)++] = record;
}
}
}

View File

@@ -0,0 +1,154 @@
#include "flash_ring.h"
uint8_t current_page = 0; // текущая страница для записи
// Вычисление CRC16 (полином 0x8005)
static uint16_t calc_crc16(const uint8_t *data, uint32_t len)
{
uint16_t crc = 0xFFFF;
for (uint32_t i = 0; i < len; i++)
{
crc ^= data[i];
for (int j = 0; j < 8; j++)
{
if (crc & 1) crc = (crc >> 1) ^ 0xA001;
else crc >>= 1;
}
}
return crc;
}
// Проверка заголовка страницы
static bool is_page_valid(uint32_t addr)
{
PageHeader_t *hdr = (PageHeader_t *)addr;
return (hdr->valid_marker == 0xDEADBEEF);
}
// Инициализация: поиск актуальной страницы или очистка
bool FlashRing_Init(void)
{
for (uint8_t i = 0; i < PAGE_COUNT; i++)
{
uint32_t addr = FLASH_BASE_USER + i * FLASH_PAGE_SIZE_USER;
if (is_page_valid(addr))
{
current_page = i;
return true;
}
}
// Если ни одна страница не актуальна — стираем обе
if (FlashRing_EraseAll()!= 1) {
return false; // Ошибка стирания
}
current_page = 0;
return true;
}
uint16_t CalculateCRC16(const uint8_t *data, uint32_t len) {
uint16_t crc = 0xFFFF; // Начальное значение
for (uint32_t i = 0; i < len; i++) {
crc ^= data[i];
for (int j = 0; j < 8; j++) {
if (crc & 1) {
crc = (crc >> 1) ^ 0xA001; // 0xA001 = обратный полином 0x8005
} else {
crc >>= 1;
}
}
}
return crc;
}
// Стирание всех страниц
int FlashRing_EraseAll(void)
{
HAL_FLASH_Unlock();
FLASH_EraseInitTypeDef EraseInit =
{
.TypeErase = FLASH_TYPEERASE_PAGES,
.PageAddress = FLASH_BASE_USER,
.NbPages = PAGE_COUNT
};
uint32_t page_error;
HAL_FLASHEx_Erase(&EraseInit, &page_error);
// HAL_FLASHLock();
HAL_FLASH_Lock();
return 1;
}
// Запись уставки
bool FlashRing_Write(const Setpoint_t *sp)
{
uint32_t page_addr = FLASH_BASE_USER + current_page * FLASH_PAGE_SIZE_USER;
PageHeader_t *hdr = (PageHeader_t *)page_addr;
// Если страница не инициализирована или заполнена — переключаемся
if (!is_page_valid(page_addr) || hdr->count >= (FLASH_PAGE_SIZE_USER - sizeof(PageHeader_t)) / sizeof(Setpoint_t))
{
// Стираем следующую страницу
uint8_t next_page = (current_page + 1) % PAGE_COUNT;
uint32_t next_addr = FLASH_BASE_USER + next_page * FLASH_PAGE_SIZE_USER;
HAL_FLASH_Unlock();
FLASH_EraseInitTypeDef EraseInit =
{
.TypeErase = FLASH_TYPEERASE_PAGES,
.PageAddress = next_addr,
.NbPages = 1
};
uint32_t page_error;
HAL_FLASHEx_Erase(&EraseInit, &page_error);
current_page = next_page;
page_addr = next_addr;
HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, (uint32_t)&hdr->valid_marker, 0xDEADBEEF);
HAL_FLASH_Program(FLASH_TYPEPROGRAM_HALFWORD, (uint32_t)&hdr->count, 0);
HAL_FLASH_Lock();
}
// Вычисляем смещение для новой уставки
uint8_t *data_start = (uint8_t *)page_addr + sizeof(PageHeader_t);
uint16_t idx = hdr->count;
Setpoint_t *dst = (Setpoint_t *)(data_start + idx * sizeof(Setpoint_t));
*dst = *sp;
hdr->count++;
// Обновляем CRC
hdr->crc = calc_crc16(data_start, hdr->count * sizeof(Setpoint_t));
return true;
}
// Чтение уставки по индексу
bool FlashRing_Read(uint16_t index, Setpoint_t *sp)
{
uint32_t page_addr = FLASH_BASE_USER + current_page * FLASH_PAGE_SIZE_USER;
if (!is_page_valid(page_addr)) return false;
PageHeader_t *hdr = (PageHeader_t *)page_addr;
if (index >= hdr->count) return false;
uint8_t *data_start = (uint8_t *)page_addr + sizeof(PageHeader_t);
*sp = *(Setpoint_t *)(data_start + index * sizeof(Setpoint_t));
return true;
}
// Получение числа записанных уставок
uint16_t FlashRing_GetCount(void)
{
uint32_t page_addr = FLASH_BASE_USER + current_page * FLASH_PAGE_SIZE_USER;
if (!is_page_valid(page_addr)) return 0;
PageHeader_t *hdr = (PageHeader_t *)page_addr;
return hdr->count;
}

View File

@@ -0,0 +1,36 @@
// File: STM32F101_102_103_105_107.dbgconf
// Version: 1.0.0
// Note: refer to STM32F101xx STM32F102xx STM32F103xx STM32F105xx STM32F107xx Reference manual (RM0008)
// STM32F101xx STM32F102xx STM32F103xx STM32F105xx STM32F107xx datasheets
// <<< Use Configuration Wizard in Context Menu >>>
// <h> Debug MCU configuration register (DBGMCU_CR)
// <i> Reserved bits must be kept at reset value
// <o.30> DBG_TIM11_STOP <i> TIM11 counter stopped when core is halted
// <o.29> DBG_TIM10_STOP <i> TIM10 counter stopped when core is halted
// <o.28> DBG_TIM9_STOP <i> TIM9 counter stopped when core is halted
// <o.27> DBG_TIM14_STOP <i> TIM14 counter stopped when core is halted
// <o.26> DBG_TIM13_STOP <i> TIM13 counter stopped when core is halted
// <o.25> DBG_TIM12_STOP <i> TIM12 counter stopped when core is halted
// <o.21> DBG_CAN2_STOP <i> Debug CAN2 stopped when core is halted
// <o.20> DBG_TIM7_STOP <i> TIM7 counter stopped when core is halted
// <o.19> DBG_TIM6_STOP <i> TIM6 counter stopped when core is halted
// <o.18> DBG_TIM5_STOP <i> TIM5 counter stopped when core is halted
// <o.17> DBG_TIM8_STOP <i> TIM8 counter stopped when core is halted
// <o.16> DBG_I2C2_SMBUS_TIMEOUT <i> SMBUS timeout mode stopped when core is halted
// <o.15> DBG_I2C1_SMBUS_TIMEOUT <i> SMBUS timeout mode stopped when core is halted
// <o.14> DBG_CAN1_STOP <i> Debug CAN1 stopped when Core is halted
// <o.13> DBG_TIM4_STOP <i> TIM4 counter stopped when core is halted
// <o.12> DBG_TIM3_STOP <i> TIM3 counter stopped when core is halted
// <o.11> DBG_TIM2_STOP <i> TIM2 counter stopped when core is halted
// <o.10> DBG_TIM1_STOP <i> TIM1 counter stopped when core is halted
// <o.9> DBG_WWDG_STOP <i> Debug window watchdog stopped when core is halted
// <o.8> DBG_IWDG_STOP <i> Debug independent watchdog stopped when core is halted
// <o.2> DBG_STANDBY <i> Debug standby mode
// <o.1> DBG_STOP <i> Debug stop mode
// <o.0> DBG_SLEEP <i> Debug sleep mode
// </h>
DbgMCU_CR = 0x00000007;
// <<< end of configuration section >>>

View File

@@ -0,0 +1,36 @@
// File: STM32F101_102_103_105_107.dbgconf
// Version: 1.0.0
// Note: refer to STM32F101xx STM32F102xx STM32F103xx STM32F105xx STM32F107xx Reference manual (RM0008)
// STM32F101xx STM32F102xx STM32F103xx STM32F105xx STM32F107xx datasheets
// <<< Use Configuration Wizard in Context Menu >>>
// <h> Debug MCU configuration register (DBGMCU_CR)
// <i> Reserved bits must be kept at reset value
// <o.30> DBG_TIM11_STOP <i> TIM11 counter stopped when core is halted
// <o.29> DBG_TIM10_STOP <i> TIM10 counter stopped when core is halted
// <o.28> DBG_TIM9_STOP <i> TIM9 counter stopped when core is halted
// <o.27> DBG_TIM14_STOP <i> TIM14 counter stopped when core is halted
// <o.26> DBG_TIM13_STOP <i> TIM13 counter stopped when core is halted
// <o.25> DBG_TIM12_STOP <i> TIM12 counter stopped when core is halted
// <o.21> DBG_CAN2_STOP <i> Debug CAN2 stopped when core is halted
// <o.20> DBG_TIM7_STOP <i> TIM7 counter stopped when core is halted
// <o.19> DBG_TIM6_STOP <i> TIM6 counter stopped when core is halted
// <o.18> DBG_TIM5_STOP <i> TIM5 counter stopped when core is halted
// <o.17> DBG_TIM8_STOP <i> TIM8 counter stopped when core is halted
// <o.16> DBG_I2C2_SMBUS_TIMEOUT <i> SMBUS timeout mode stopped when core is halted
// <o.15> DBG_I2C1_SMBUS_TIMEOUT <i> SMBUS timeout mode stopped when core is halted
// <o.14> DBG_CAN1_STOP <i> Debug CAN1 stopped when Core is halted
// <o.13> DBG_TIM4_STOP <i> TIM4 counter stopped when core is halted
// <o.12> DBG_TIM3_STOP <i> TIM3 counter stopped when core is halted
// <o.11> DBG_TIM2_STOP <i> TIM2 counter stopped when core is halted
// <o.10> DBG_TIM1_STOP <i> TIM1 counter stopped when core is halted
// <o.9> DBG_WWDG_STOP <i> Debug window watchdog stopped when core is halted
// <o.8> DBG_IWDG_STOP <i> Debug independent watchdog stopped when core is halted
// <o.2> DBG_STANDBY <i> Debug standby mode
// <o.1> DBG_STOP <i> Debug stop mode
// <o.0> DBG_SLEEP <i> Debug sleep mode
// </h>
DbgMCU_CR = 0x00000007;
// <<< end of configuration section >>>

View File

@@ -0,0 +1,47 @@
[BREAKPOINTS]
ForceImpTypeAny = 0
ShowInfoWin = 1
EnableFlashBP = 2
BPDuringExecution = 0
[CFI]
CFISize = 0x00
CFIAddr = 0x00
[CPU]
MonModeVTableAddr = 0xFFFFFFFF
MonModeDebug = 0
MaxNumAPs = 0
LowPowerHandlingMode = 0
OverrideMemMap = 0
AllowSimulation = 1
ScriptFile=""
[FLASH]
RMWThreshold = 0x400
Loaders=""
EraseType = 0x00
CacheExcludeSize = 0x00
CacheExcludeAddr = 0x00
MinNumBytesFlashDL = 0
SkipProgOnCRCMatch = 1
VerifyDownload = 1
AllowCaching = 1
EnableFlashDL = 2
Override = 0
Device="ARM7"
[GENERAL]
MaxNumTransfers = 0x00
WorkRAMSize = 0x00
WorkRAMAddr = 0x00
RAMUsageLimit = 0x00
[SWO]
SWOLogFile=""
[MEM]
RdOverrideOrMask = 0x00
RdOverrideAndMask = 0xFFFFFFFF
RdOverrideAddr = 0xFFFFFFFF
WrOverrideOrMask = 0x00
WrOverrideAndMask = 0xFFFFFFFF
WrOverrideAddr = 0xFFFFFFFF
[RAM]
VerifyDownload = 0x00
[DYN_MEM_MAP]
NumUserRegion = 0x00

View File

@@ -1,7 +1,6 @@
/*
* Auto generated Run-Time-Environment Configuration File
* *** Do not modify ! ***
* UVISION generated file: DO NOT EDIT!
* Generated by: uVision version 5.41.0.0
*
* Project: 'john103C6T6'
* Target: 'john103C6T6'
@@ -16,9 +15,9 @@
*/
#define CMSIS_device_header "stm32f10x.h"
/* Keil.ARM Compiler::Compiler:I/O:STDOUT:Breakpoint:1.2.0 */
/* Keil::Compiler&ARM Compiler:I/O:STDOUT&Breakpoint@1.2.0 */
#define RTE_Compiler_IO_STDOUT /* Compiler I/O: STDOUT */
#define RTE_Compiler_IO_STDOUT_BKPT /* Compiler I/O: STDOUT Breakpoint */
#define RTE_Compiler_IO_STDOUT_BKPT /* Compiler I/O: STDOUT Breakpoint */
#endif /* RTE_COMPONENTS_H */

File diff suppressed because it is too large Load Diff

View File

@@ -10,21 +10,21 @@
<TargetName>john103C6T6</TargetName>
<ToolsetNumber>0x4</ToolsetNumber>
<ToolsetName>ARM-ADS</ToolsetName>
<pArmCC>6190000::V6.19::ARMCLANG</pArmCC>
<pCCUsed>6190000::V6.19::ARMCLANG</pCCUsed>
<pArmCC>6220000::V6.22::ARMCLANG</pArmCC>
<pCCUsed>6220000::V6.22::ARMCLANG</pCCUsed>
<uAC6>1</uAC6>
<TargetOption>
<TargetCommonOption>
<Device>STM32F103C6</Device>
<Device>STM32F103CB</Device>
<Vendor>STMicroelectronics</Vendor>
<PackID>Keil.STM32F1xx_DFP.2.4.1</PackID>
<PackURL>https://www.keil.com/pack/</PackURL>
<Cpu>IRAM(0x20000000-0x200027FF) IROM(0x8000000-0x8007FFF) CLOCK(8000000) CPUTYPE("Cortex-M3") TZ</Cpu>
<PackID>Keil.STM32F1xx_DFP.2.4.0</PackID>
<PackURL>http://www.keil.com/pack/</PackURL>
<Cpu>IRAM(0x20000000,0x00005000) IROM(0x08000000,0x00020000) CPUTYPE("Cortex-M3") CLOCK(12000000) ELITTLE</Cpu>
<FlashUtilSpec></FlashUtilSpec>
<StartupFile></StartupFile>
<FlashDriverDll></FlashDriverDll>
<FlashDriverDll>UL2CM3(-S0 -C0 -P0 -FD20000000 -FC1000 -FN1 -FF0STM32F10x_128 -FS08000000 -FL020000 -FP0($$Device:STM32F103CB$Flash\STM32F10x_128.FLM))</FlashDriverDll>
<DeviceId>0</DeviceId>
<RegisterFile></RegisterFile>
<RegisterFile>$$Device:STM32F103CB$Device\Include\stm32f10x.h</RegisterFile>
<MemoryEnv></MemoryEnv>
<Cmp></Cmp>
<Asm></Asm>
@@ -34,7 +34,7 @@
<SLE66CMisc></SLE66CMisc>
<SLE66AMisc></SLE66AMisc>
<SLE66LinkerMisc></SLE66LinkerMisc>
<SFDFile>$$Device:STM32F103C6$SVD\STM32F103xx.svd</SFDFile>
<SFDFile>$$Device:STM32F103CB$SVD\STM32F103xx.svd</SFDFile>
<bCustSvd>0</bCustSvd>
<UseEnv>0</UseEnv>
<BinPath></BinPath>
@@ -82,7 +82,7 @@
</BeforeMake>
<AfterMake>
<RunUserProg1>0</RunUserProg1>
<RunUserProg2>1</RunUserProg2>
<RunUserProg2>0</RunUserProg2>
<UserProg1Name></UserProg1Name>
<UserProg2Name></UserProg2Name>
<UserProg1Dos16Mode>0</UserProg1Dos16Mode>
@@ -111,7 +111,7 @@
</CommonProperty>
<DllOption>
<SimDllName>SARMCM3.DLL</SimDllName>
<SimDllArguments>-REMAP</SimDllArguments>
<SimDllArguments> -REMAP</SimDllArguments>
<SimDlgDll>DCM.DLL</SimDlgDll>
<SimDlgDllArguments>-pCM3</SimDlgDllArguments>
<TargetDllName>SARMCM3.DLL</TargetDllName>
@@ -133,13 +133,13 @@
<UseTargetDll>1</UseTargetDll>
<UseExternalTool>0</UseExternalTool>
<RunIndependent>0</RunIndependent>
<UpdateFlashBeforeDebugging>0</UpdateFlashBeforeDebugging>
<UpdateFlashBeforeDebugging>1</UpdateFlashBeforeDebugging>
<Capability>1</Capability>
<DriverSelection>4101</DriverSelection>
<DriverSelection>4096</DriverSelection>
</Flash1>
<bUseTDR>1</bUseTDR>
<Flash2>STLink\ST-LINKIII-KEIL_SWO.dll</Flash2>
<Flash3>"" ()</Flash3>
<Flash2>BIN\UL2CM3.DLL</Flash2>
<Flash3></Flash3>
<Flash4></Flash4>
<pFcarmOut></pFcarmOut>
<pFcarmGrp></pFcarmGrp>
@@ -160,7 +160,7 @@
<ldmm>1</ldmm>
<ldXref>1</ldXref>
<BigEnd>0</BigEnd>
<AdsALst>1</AdsALst>
<AdsALst>0</AdsALst>
<AdsACrf>1</AdsACrf>
<AdsANop>0</AdsANop>
<AdsANot>0</AdsANot>
@@ -196,7 +196,7 @@
<uLtcg>0</uLtcg>
<nSecure>0</nSecure>
<RoSelD>3</RoSelD>
<RwSelD>4</RwSelD>
<RwSelD>3</RwSelD>
<CodeSel>0</CodeSel>
<OptFeed>0</OptFeed>
<NoZi1>0</NoZi1>
@@ -248,12 +248,12 @@
<IRAM>
<Type>0</Type>
<StartAddress>0x20000000</StartAddress>
<Size>0x2800</Size>
<Size>0x5000</Size>
</IRAM>
<IROM>
<Type>1</Type>
<StartAddress>0x8000000</StartAddress>
<Size>0x8000</Size>
<Size>0x20000</Size>
</IROM>
<XRAM>
<Type>0</Type>
@@ -278,12 +278,12 @@
<OCR_RVCT4>
<Type>1</Type>
<StartAddress>0x8000000</StartAddress>
<Size>0x8000</Size>
<Size>0x20000</Size>
</OCR_RVCT4>
<OCR_RVCT5>
<Type>1</Type>
<StartAddress>0x8008000</StartAddress>
<Size>0x2000</Size>
<StartAddress>0x0</StartAddress>
<Size>0x0</Size>
</OCR_RVCT5>
<OCR_RVCT6>
<Type>0</Type>
@@ -303,7 +303,7 @@
<OCR_RVCT9>
<Type>0</Type>
<StartAddress>0x20000000</StartAddress>
<Size>0x2800</Size>
<Size>0x5000</Size>
</OCR_RVCT9>
<OCR_RVCT10>
<Type>0</Type>
@@ -339,9 +339,9 @@
<v6Rtti>0</v6Rtti>
<VariousControls>
<MiscControls></MiscControls>
<Define>USE_HAL_DRIVER,STM32F103x6</Define>
<Define>USE_HAL_DRIVER,STM32F103xB</Define>
<Undefine></Undefine>
<IncludePath>../Core/Inc;../Drivers/STM32F1xx_HAL_Driver/Inc;../Drivers/STM32F1xx_HAL_Driver/Inc/Legacy;../Drivers/CMSIS/Device/ST/STM32F1xx/Include;../Drivers/CMSIS/Include;../Modbus</IncludePath>
<IncludePath>../Core/Inc;../Drivers/STM32F1xx_HAL_Driver/Inc;../Drivers/STM32F1xx_HAL_Driver/Inc/Legacy;../Drivers/CMSIS/Device/ST/STM32F1xx/Include;../Drivers/CMSIS/Include;../Modbus;..\EEPROM_Emul\lib;..\..\core\STM32_Modbus\Inc;..\EEPROM_Emul\lib</IncludePath>
</VariousControls>
</Cads>
<Aads>
@@ -386,20 +386,15 @@
<GroupName>Application/MDK-ARM</GroupName>
<Files>
<File>
<FileName>startup_stm32f103x6.s</FileName>
<FileName>startup_stm32f10x_md.s</FileName>
<FileType>2</FileType>
<FilePath>startup_stm32f103x6.s</FilePath>
<FilePath>.\startup_stm32f10x_md.s</FilePath>
</File>
</Files>
</Group>
<Group>
<GroupName>Application/User/Core</GroupName>
<Files>
<File>
<FileName>UART_TERM.c</FileName>
<FileType>1</FileType>
<FilePath>..\Core\Src\UART_TERM.c</FilePath>
</File>
<File>
<FileName>dallas_tools.c</FileName>
<FileType>1</FileType>
@@ -420,21 +415,6 @@
<FileType>1</FileType>
<FilePath>..\Core\Src\ow_port.c</FilePath>
</File>
<File>
<FileName>crc_algs.c</FileName>
<FileType>1</FileType>
<FilePath>..\Modbus\crc_algs.c</FilePath>
</File>
<File>
<FileName>modbus.c</FileName>
<FileType>1</FileType>
<FilePath>..\Modbus\modbus.c</FilePath>
</File>
<File>
<FileName>rs_message.c</FileName>
<FileType>1</FileType>
<FilePath>..\Modbus\rs_message.c</FilePath>
</File>
<File>
<FileName>main.c</FileName>
<FileType>1</FileType>
@@ -750,6 +730,11 @@
<FileType>1</FileType>
<FilePath>../Core/Src/stm32f1xx_hal_timebase_tim.c</FilePath>
</File>
<File>
<FileName>flash_ring.c</FileName>
<FileType>1</FileType>
<FilePath>..\EEPROM_Emul\src\flash_ring.c</FilePath>
</File>
</Files>
</Group>
<Group>
@@ -760,6 +745,16 @@
<FileType>1</FileType>
<FilePath>../Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_gpio_ex.c</FilePath>
</File>
<File>
<FileName>stm32f1xx_hal_tim.c</FileName>
<FileType>1</FileType>
<FilePath>../Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c</FilePath>
</File>
<File>
<FileName>stm32f1xx_hal_tim_ex.c</FileName>
<FileType>1</FileType>
<FilePath>../Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c</FilePath>
</File>
<File>
<FileName>stm32f1xx_hal_adc.c</FileName>
<FileType>1</FileType>
@@ -1202,16 +1197,6 @@
</FileArmAds>
</FileOption>
</File>
<File>
<FileName>stm32f1xx_hal_tim.c</FileName>
<FileType>1</FileType>
<FilePath>../Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim.c</FilePath>
</File>
<File>
<FileName>stm32f1xx_hal_tim_ex.c</FileName>
<FileType>1</FileType>
<FilePath>../Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_tim_ex.c</FilePath>
</File>
<File>
<FileName>stm32f1xx_hal_uart.c</FileName>
<FileType>1</FileType>
@@ -1229,9 +1214,82 @@
</File>
</Files>
</Group>
<Group>
<GroupName>modbus</GroupName>
<Files>
<File>
<FileName>__crc_algs.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\__crc_algs.c</FilePath>
</File>
<File>
<FileName>__modbus_compat.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\__modbus_compat.c</FilePath>
</File>
<File>
<FileName>modbus.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\modbus.c</FilePath>
</File>
<File>
<FileName>modbus_coils.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\modbus_coils.c</FilePath>
</File>
<File>
<FileName>modbus_core.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\modbus_core.c</FilePath>
</File>
<File>
<FileName>modbus_devid.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\modbus_devid.c</FilePath>
</File>
<File>
<FileName>modbus_diag.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\modbus_diag.c</FilePath>
</File>
<File>
<FileName>modbus_holdregs.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\modbus_holdregs.c</FilePath>
</File>
<File>
<FileName>modbus_inputregs.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\modbus_inputregs.c</FilePath>
</File>
<File>
<FileName>modbus_master.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\modbus_master.c</FilePath>
</File>
<File>
<FileName>modbus_slave.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\modbus_slave.c</FilePath>
</File>
<File>
<FileName>rs_message.c</FileName>
<FileType>1</FileType>
<FilePath>..\..\core\STM32_Modbus\Src\rs_message.c</FilePath>
</File>
<File>
<FileName>modbus_data.c</FileName>
<FileType>1</FileType>
<FilePath>..\Modbus\modbus_data.c</FilePath>
</File>
</Files>
</Group>
<Group>
<GroupName>::CMSIS</GroupName>
</Group>
<Group>
<GroupName>::CMSIS Driver</GroupName>
</Group>
<Group>
<GroupName>::Compiler</GroupName>
</Group>
@@ -1240,13 +1298,26 @@
</Targets>
<RTE>
<apis/>
<components>
<component Cclass="CMSIS" Cgroup="CORE" Cvendor="ARM" Cversion="5.6.0" condition="ARMv6_7_8-M Device">
<apis>
<api Capiversion="2.3.0" Cclass="CMSIS Driver" Cgroup="Flash" exclusive="0">
<package name="CMSIS" schemaVersion="1.7.7" url="http://www.keil.com/pack/" vendor="ARM" version="5.9.0"/>
<targetInfos>
<targetInfo name="john103C6T6"/>
</targetInfos>
</api>
</apis>
<components>
<component Capiversion="2.3.0" Cclass="CMSIS Driver" Cgroup="Flash" Csub="Custom" Cvendor="ARM" Cversion="1.0.0" custom="1">
<package name="CMSIS" schemaVersion="1.7.7" url="http://www.keil.com/pack/" vendor="ARM" version="5.9.0"/>
<targetInfos>
<targetInfo name="john103C6T6"/>
</targetInfos>
</component>
<component Cclass="CMSIS" Cgroup="CORE" Cvendor="ARM" Cversion="6.1.0" condition="ARMv6_7_8-M Device">
<package name="CMSIS" schemaVersion="1.7.36" url="https://www.keil.com/pack/" vendor="ARM" version="6.1.0"/>
<targetInfos>
<targetInfo name="john103C6T6"/>
</targetInfos>
</component>
<component Cbundle="ARM Compiler" Cclass="Compiler" Cgroup="I/O" Csub="STDOUT" Cvariant="Breakpoint" Cvendor="Keil" Cversion="1.2.0" condition="ARMCC Cortex-M">
<package name="ARM_Compiler" schemaVersion="1.7.7" url="https://www.keil.com/pack/" vendor="Keil" version="1.7.2"/>

File diff suppressed because it is too large Load Diff

View File

@@ -2,14 +2,14 @@
; *** Scatter-Loading Description File generated by uVision ***
; *************************************************************
LR_IROM1 0x08000000 0x00008000 { ; load region size_region
ER_IROM1 0x08000000 0x00008000 { ; load address = execution address
LR_IROM1 0x08000000 0x00020000 { ; load region size_region
ER_IROM1 0x08000000 0x00020000 { ; load address = execution address
*.o (RESET, +First)
*(InRoot$$Sections)
.ANY (+RO)
.ANY (+XO)
}
RW_IRAM1 0x20000000 0x00002800 { ; RW data
RW_IRAM1 0x20000000 0x00005000 { ; RW data
.ANY (+RW +ZI)
}
}

View File

@@ -1,7 +1,10 @@
;******************** (C) COPYRIGHT 2017 STMicroelectronics ********************
;* File Name : startup_stm32f103x6.s
;******************** (C) COPYRIGHT 2011 STMicroelectronics ********************
;* File Name : startup_stm32f10x_md.s
;* Author : MCD Application Team
;* Description : STM32F103x6 Devices vector table for MDK-ARM toolchain.
;* Version : V3.5.1
;* Date : 08-September-2021
;* Description : STM32F10x Medium Density Devices vector table for MDK-ARM
;* toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
@@ -9,19 +12,19 @@
;* - Configure the clock system
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the Cortex-M3 processor is in Thread mode,
;* After Reset the CortexM3 processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;******************************************************************************
;* @attention
;* <<< Use Configuration Wizard in Context Menu >>>
;*******************************************************************************
;*
;* Copyright (c) 2017-2021 STMicroelectronics.
;* Copyright (c) 2011 STMicroelectronics.
;* All rights reserved.
;*
;* This software is licensed under terms that can be found in the LICENSE file
;* in the root directory of this software component.
;* If no LICENSE file comes with this software, it is provided AS-IS.
;*
;******************************************************************************
;
;*******************************************************************************
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
@@ -29,7 +32,7 @@
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x400
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
@@ -40,7 +43,7 @@ __initial_sp
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x400
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
@@ -105,18 +108,18 @@ __Vectors DCD __initial_sp ; Top of Stack
DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD 0 ; Reserved
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD 0 ; Reserved
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD 0 ; Reserved
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTC_Alarm_IRQHandler ; RTC Alarm through EXTI Line
DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
__Vectors_End
@@ -124,7 +127,7 @@ __Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler routine
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
@@ -211,13 +214,18 @@ Default_Handler PROC
EXPORT TIM1_CC_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTC_Alarm_IRQHandler [WEAK]
EXPORT RTCAlarm_IRQHandler [WEAK]
EXPORT USBWakeUp_IRQHandler [WEAK]
WWDG_IRQHandler
@@ -250,13 +258,18 @@ TIM1_TRG_COM_IRQHandler
TIM1_CC_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTC_Alarm_IRQHandler
RTCAlarm_IRQHandler
USBWakeUp_IRQHandler
B .
@@ -268,7 +281,7 @@ USBWakeUp_IRQHandler
;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************
IF :DEF:__MICROLIB
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base

View File

@@ -1,116 +0,0 @@
#include "crc_algs.h"
uint32_t CRC_calc;
uint32_t CRC_ref;
//uint16_t CRC_calc;
//uint16_t CRC_ref;
// left this global for debug
uint8_t uchCRCHi = 0xFF;
uint8_t uchCRCLo = 0xFF;
unsigned uIndex;
uint32_t crc32(uint8_t *data, uint32_t data_size)
{
static const unsigned int crc32_table[] =
{
0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
};
unsigned int crc = 0xFFFFFFFF;
while (data_size--)
{
crc = (crc >> 8) ^ crc32_table[(crc ^ *data) & 255];
data++;
}
return crc^0xFFFFFFFF;
}
uint16_t crc16(uint8_t *data, uint32_t data_size)
{
/*Table of CRC values for high order byte*/
static unsigned char auchCRCHi[]=
{
0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
};
/*Table of CRC values for low order byte*/
static char auchCRCLo[] =
{
0x00,0xC0,0xC1,0x01,0xC3,0x03,0x02,0xC2,0xC6,0x06,0x07,0xC7,0x05,0xC5,0xC4,0x04,
0xCC,0x0C,0x0D,0xCD,0x0F,0xCF,0xCE,0x0E,0x0A,0xCA,0xCB,0x0B,0xC9,0x09,0x08,0xC8,
0xD8,0x18,0x19,0xD9,0x1B,0xDB,0xDA,0x1A,0x1E,0xDE,0xDF,0x1F,0xDD,0x1D,0x1C,0xDC,
0x14,0xD4,0xD5,0x15,0xD7,0x17,0x16,0xD6,0xD2,0x12,0x13,0xD3,0x11,0xD1,0xD0,0x10,
0xF0,0x30,0x31,0xF1,0x33,0xF3,0xF2,0x32,0x36,0xF6,0xF7,0x37,0xF5,0x35,0x34,0xF4,
0x3C,0xFC,0xFD,0x3D,0xFF,0x3F,0x3E,0xFE,0xFA,0x3A,0x3B,0xFB,0x39,0xF9,0xF8,0x38,
0x28,0xE8,0xE9,0x29,0xEB,0x2B,0x2A,0xEA,0xEE,0x2E,0x2F,0xEF,0x2D,0xED,0xEC,0x2C,
0xE4,0x24,0x25,0xE5,0x27,0xE7,0xE6,0x26,0x22,0xE2,0xE3,0x23,0xE1,0x21,0x20,0xE0,
0xA0,0x60,0x61,0xA1,0x63,0xA3,0xA2,0x62,0x66,0xA6,0xA7,0x67,0xA5,0x65,0x64,0xA4,
0x6C,0xAC,0xAD,0x6D,0xAF,0x6F,0x6E,0xAE,0xAA,0x6A,0x6B,0xAB,0x69,0xA9,0xA8,0x68,
0x78,0xB8,0xB9,0x79,0xBB,0x7B,0x7A,0xBA,0xBE,0x7E,0x7F,0xBF,0x7D,0xBD,0xBC,0x7C,
0xB4,0x74,0x75,0xB5,0x77,0xB7,0xB6,0x76,0x72,0xB2,0xB3,0x73,0xB1,0x71,0x70,0xB0,
0x50,0x90,0x91,0x51,0x93,0x53,0x52,0x92,0x96,0x56,0x57,0x97,0x55,0x95,0x94,0x54,
0x9C,0x5C,0x5D,0x9D,0x5F,0x9F,0x9E,0x5E,0x5A,0x9A,0x9B,0x5B,0x99,0x59,0x58,0x98,
0x88,0x48,0x49,0x89,0x4B,0x8B,0x8A,0x4A,0x4E,0x8E,0x8F,0x4F,0x8D,0x4D,0x4C,0x8C,
0x44,0x84,0x85,0x45,0x87,0x47,0x46,0x86,0x82,0x42,0x43,0x83,0x41,0x81,0x80,0x40,
};
uchCRCHi = 0xFF;
uchCRCLo = 0xFF;
/* CRC Generation Function */
while( data_size--) /* pass through message buffer */
{
uIndex = uchCRCHi ^ *data++; /* calculate the CRC */
uchCRCHi = uchCRCLo ^ auchCRCHi[uIndex];
uchCRCLo = auchCRCLo[uIndex];
}
return uchCRCHi | uchCRCLo<<8;
}

View File

@@ -1,9 +0,0 @@
#include "modbus_config.h"
// extern here to use in bootloader.c
extern uint32_t CRC_calc;
extern uint32_t CRC_ref;
uint16_t crc16(uint8_t *data, uint32_t data_size);
uint32_t crc32(uint8_t *data, uint32_t data_size);

View File

@@ -1,951 +0,0 @@
/**
**************************************************************************
* @file modbus.c
* @brief Модуль для реализации MODBUS.
**************************************************************************
* @details Файл содержит реализацию функций работы с Modbus, включая:
* - доступ к coils и registers;
* - обработку команд протокола;
* - взаимодействие с RS (UART);
* - инициализацию.
*
* @section Функции и макросы
*
* ### Доступ к coils:
* - MB_Set_Coil_Local() — Установить coil по локальному адресу.
* - MB_Reset_Coil_Local() — Сбросить coil по локальному адресу.
* - MB_Toogle_Coil_Local() — Инвертировать coil по локальному адресу.
* - MB_Read_Coil_Local() — Прочитать coil по локальному адресу.
* - MB_Write_Coil_Global() — Установить/сбросить coil по глобальному адресу.
* - MB_Read_Coil_Global() — Прочитать coil по глобальному адресу.
*
* ### Обработка команд Modbus:
* - MB_DefineRegistersAddress() — Определить начальный адрес регистра.
* - MB_DefineCoilsAddress() — Определить начальный адрес coils.
* - MB_Check_Address_For_Arr() — Проверить, принадлежит ли адрес массиву.
* - Основные команды Modbus:
* - MB_Read_Coils()
* - MB_Read_Hold_Regs()
* - MB_Write_Single_Coil()
* - MB_Write_Miltuple_Coils()
* - MB_Write_Miltuple_Regs()
*
* ### Функции для работы с RS (UART):
* - RS_Parse_Message() / RS_Collect_Message() — Парсинг и сборка сообщения.
* - RS_Response() — Отправка ответа.
* - RS_Define_Size_of_RX_Message() — Определение размера принимаемого сообщения.
* - RS_Init() — Инициализация UART.
*
* ### Инициализация:
* - MODBUS_FirstInit() — Инициализация модуля Modbus.
*
* @section Структура данных Modbus
*
* #### Holding/Input Registers:
* - Регистры — 16-битные слова. Доступ к регистрам осуществляется через указатель.
* Таким образом, сами регистры могут представлять собой как массив так и структуру.
*
* #### Coils:
* - Coils — это биты, упакованные в 16-битные слова. Доступ к коилам осуществляется через указатель.
* Таким образом, сами коилы могут представлять собой как массив так и структуру.
*
* @section Инструкция по подключению
* Для корректной работы надо подключить обработчики RS_UART_Handler(), RS_TIM_Handler(),
* в соответствубщие низкоуровневые прерывания UART_IRQHandler, TIM_IRQHandler. После HAL'овского обработчика
*
* Также необходимо в modbus_config.h настроить дефайны для нужной работы UART
* После для запуска Modbus:
* @verbatim
//----------------Прием модбас----------------//
#include "rs_message.h"
MODBUS_FirstInit();
RS_Receive_IT(&hmodbus1, &MODBUS_MSG);
* @endverbatim
*
******************************************************************************/
#include "rs_message.h"
uint32_t dbg_temp, dbg_temp2, dbg_temp3; // for debug
/* MODBUS HANDLES */
extern UART_HandleTypeDef rs_huart;
extern TIM_HandleTypeDef rs_htim;
RS_HandleTypeDef hmodbus1;
/* DEFINE REGISTERS/COILS */
MB_DeviceIdentificationTypeDef MB_INFO;
MB_DataStructureTypeDef MB_DATA;
RS_MsgTypeDef MODBUS_MSG;
//-------------------------------------------------------------------
//-----------------------------FOR USER------------------------------
/**
* @brief First set up of MODBUS.
* @details Первый инит модбас. Заполняет структуры и инициализирует таймер и юарт для общения по модбас.
* @note This called from main
*/
void MODBUS_FirstInit(void)
{
MB_DevoceInentificationInit();
//-----------SETUP MODBUS-------------
// set up modbus: MB_RX_Size_NotConst and Timeout enable
hmodbus1.ID = MODBUS_DEVICE_ID;
hmodbus1.sRS_Timeout = MODBUS_TIMEOUT;
hmodbus1.sRS_Mode = SLAVE_ALWAYS_WAIT;
hmodbus1.sRS_RX_Size_Mode = RS_RX_Size_NotConst;
// INIT
hmodbus1.RS_STATUS = RS_Init(&hmodbus1, &rs_huart, &rs_htim, 0);
RS_EnableReceive();
}
/**
* @brief Set or Reset Coil at its global address.
* @param Addr - адрес коила.
* @param WriteVal - Что записать в коил: 0 или 1.
* @return ExceptionCode - Код исключения если коила по адресу не существует, и NO_ERRORS если все ок.
*
* @details Позволяет обратиться к любому коилу по его глобальному адрессу.
Вне зависимости от того как коилы размещены в памяти.
*/
MB_ExceptionTypeDef MB_Write_Coil_Global(uint16_t Addr, MB_CoilsOpTypeDef WriteVal)
{
//---------CHECK FOR ERRORS----------
MB_ExceptionTypeDef Exception = NO_ERRORS;
uint16_t *coils;
uint16_t start_shift = 0; // shift in coils register
//------------WRITE COIL-------------
Exception = MB_DefineCoilsAddress(&coils, Addr, 1, &start_shift, 1);
if(Exception == NO_ERRORS)
{
switch(WriteVal)
{
case SET_COIL:
*coils |= (1<<start_shift);
break;
case RESET_COIL:
*coils &= ~(1<<start_shift);
break;
case TOOGLE_COIL:
*coils ^= (1<<start_shift);
break;
}
}
return Exception;
}
/**
* @brief Read Coil at its global address.
* @param Addr - адрес коила.
* @param Exception - Указатель на переменную для кода исключения, в случа неудачи при чтении.
* @return uint16_t - Возвращает весь регистр с маской на запрошенном коиле.
*
* @details Позволяет обратиться к любому коилу по его глобальному адрессу.
Вне зависимости от того как коилы размещены в памяти.
*/
uint16_t MB_Read_Coil_Global(uint16_t Addr, MB_ExceptionTypeDef *Exception)
{
//---------CHECK FOR ERRORS----------
MB_ExceptionTypeDef Exception_tmp;
if(Exception == NULL) // if exception is not given to func fill it
Exception = &Exception_tmp;
uint16_t *coils;
uint16_t start_shift = 0; // shift in coils register
//------------READ COIL--------------
*Exception = MB_DefineCoilsAddress(&coils, Addr, 1, &start_shift, 0);
if(*Exception == NO_ERRORS)
{
return ((*coils)&(1<<start_shift));
}
else
{
return 0;
}
}
//-------------------------------------------------------------------
//----------------FUNCTIONS FOR PROCESSING MESSAGE-------------------
/**
* @brief Check is address valid for certain array.
* @param Addr - начальный адресс.
* @param Qnt - количество запрашиваемых элементов.
* @param R_ARR_ADDR - начальный адресс массива R_ARR.
* @param R_ARR_NUMB - количество элементов в массиве R_ARR.
* @return ExceptionCode - ILLEGAL DATA ADRESS если адресс недействителен, и NO_ERRORS если все ок.
*
* @details Позволяет определить, принадлежит ли адресс Addr массиву R_ARR:
* Если адресс Addr находится в диапазоне адрессов массива R_ARR, то возвращаем NO_ERROR.
* Если адресс Addr находится за пределами адрессов массива R_ARR - ILLEGAL_DATA_ADDRESSю.
*/
MB_ExceptionTypeDef MB_Check_Address_For_Arr(uint16_t Addr, uint16_t Qnt, uint16_t R_ARR_ADDR, uint16_t R_ARR_NUMB)
{
// if address from this array
if(Addr >= R_ARR_ADDR)
{
// if quantity too big return error
if ((Addr - R_ARR_ADDR) + Qnt > R_ARR_NUMB)
{
return ILLEGAL_DATA_ADDRESS; // return exception code
}
// if all ok - return no errors
return NO_ERRORS;
}
// if address isnt from this array return error
else
return ILLEGAL_DATA_ADDRESS; // return exception code
}
/**
* @brief Define Address Origin for Input/Holding Registers
* @param pRegs - указатель на указатель регистров.
* @param Addr - адрес начального регистра.
* @param Qnt - количество запрашиваемых регистров.
* @param WriteFlag - флаг регистр нужны для чтения или записи.
* @return ExceptionCode - Код исключения если есть, и NO_ERRORS если нет.
*
* @details Определение адреса начального регистра.
* @note WriteFlag пока не используется.
*/
MB_ExceptionTypeDef MB_DefineRegistersAddress(uint16_t **pRegs, uint16_t Addr, uint16_t Qnt, uint8_t RegisterType)
{
/* check quantity error */
if (Qnt > 125)
{
return ILLEGAL_DATA_VALUE; // return exception code
}
if(RegisterType == RegisterType_Holding)
{
// Default holding registers
if(MB_Check_Address_For_Arr(Addr, Qnt, R_HOLDING_ADDR, R_HOLDING_QNT) == NO_ERRORS)
{
*pRegs = MB_Set_Register_Ptr(&MB_DATA.HoldRegs, Addr); // указатель на выбранный по Addr регистр
}
// if address doesnt match any array - return illegal data address response
else
{
return ILLEGAL_DATA_ADDRESS;
}
}
else if(RegisterType == RegisterType_Input)
{
// Default input registers
if(MB_Check_Address_For_Arr(Addr, Qnt, R_INPUT_ADDR, R_INPUT_QNT) == NO_ERRORS)
{
*pRegs = MB_Set_Register_Ptr(&MB_DATA.InRegs, Addr); // указатель на выбранный по Addr регистр
}
// if address doesnt match any array - return illegal data address response
else
{
return ILLEGAL_DATA_ADDRESS;
}
}
else
{
return ILLEGAL_FUNCTION;
}
// if found requeried array return no err
return NO_ERRORS; // return no errors
}
/**
* @brief Define Address Origin for coils
* @param pCoils - указатель на указатель коилов.
* @param Addr - адресс начального коила.
* @param Qnt - количество запрашиваемых коилов.
* @param start_shift - указатель на переменную содержащую сдвиг внутри регистра для начального коила.
* @param WriteFlag - флаг коилы нужны для чтения или записи.
* @return ExceptionCode - Код исключения если есть, и NO_ERRORS если нет.
*
* @details Определение адреса начального регистра запрашиваемых коилов.
* @note WriteFlag используется для определния регистров GPIO: ODR или IDR.
*/
MB_ExceptionTypeDef MB_DefineCoilsAddress(uint16_t **pCoils, uint16_t Addr, uint16_t Qnt, uint16_t *start_shift, uint8_t WriteFlag)
{
/* check quantity error */
if (Qnt > 2000)
{
return ILLEGAL_DATA_VALUE; // return exception code
}
// Default coils
if(MB_Check_Address_For_Arr(Addr, Qnt, C_CONTROL_ADDR, C_CONTROL_QNT) == NO_ERRORS)
{
*pCoils = MB_Set_Coil_Reg_Ptr(&MB_DATA.Coils, Addr); // указатель на выбранный по Addr массив коилов
}
// if address doesnt match any array - return illegal data address response
else
{
return ILLEGAL_DATA_ADDRESS;
}
*start_shift = Addr % 16; // set shift to requested coil
// if found requeried array return no err
return NO_ERRORS; // return no errors
}
/**
* @brief Proccess command Read Coils (01 - 0x01).
* @param modbus_msg - указатель на структуру собщения modbus.
* @return fMessageHandled - статус о результате обработки комманды.
* @details Обработка команды Read Coils.
*/
uint8_t MB_Read_Coils(RS_MsgTypeDef *modbus_msg)
{
//---------CHECK FOR ERRORS----------
uint16_t *coils;
uint16_t start_shift = 0; // shift in coils register
modbus_msg->Except_Code = MB_DefineCoilsAddress(&coils, modbus_msg->Addr, modbus_msg->Qnt, &start_shift, 0);
if(modbus_msg->Except_Code != NO_ERRORS)
return 0;
//-----------READING COIL------------
// setup output message data size
modbus_msg->ByteCnt = Divide_Up(modbus_msg->Qnt, 8);
// create mask for coils
uint16_t mask_for_coils = 0; // mask for coils that've been chosen
uint16_t setted_coils = 0; // value of setted coils
uint16_t temp_reg = 0; // temp register for saving coils that hasnt been chosen
uint16_t coil_cnt = 0; // counter for processed coils
// cycle until all registers with requered coils would be processed
int shift = start_shift; // set shift to first coil in first register
int ind = 0; // index for coils registers and data
for(; ind <= Divide_Up(start_shift + modbus_msg->Qnt, 16); ind++)
{
//----SET MASK FOR COILS REGISTER----
mask_for_coils = 0;
for(; shift < 0x10; shift++)
{
mask_for_coils |= 1<<(shift); // choose certain coil
if(++coil_cnt >= modbus_msg->Qnt)
break;
}
shift = 0; // set shift to zero for the next step
//-----------READ COILS--------------
modbus_msg->DATA[ind] = (*(coils+ind)&mask_for_coils) >> start_shift;
if(ind > 0)
modbus_msg->DATA[ind-1] |= ((*(coils+ind)&mask_for_coils) << 16) >> start_shift;
}
// т.к. DATA 16-битная, для 8-битной передачи, надо поменять местами верхний и нижний байты
for(; ind >= 0; --ind)
modbus_msg->DATA[ind] = ByteSwap16(modbus_msg->DATA[ind]);
return 1;
}
/**
* @brief Proccess command Read Holding Registers (03 - 0x03).
* @param modbus_msg - указатель на структуру собщения modbus.
* @return fMessageHandled - статус о результате обработки комманды.
* @details Обработка команды Read Holding Registers.
*/
uint8_t MB_Read_Hold_Regs(RS_MsgTypeDef *modbus_msg)
{
//---------CHECK FOR ERRORS----------
// get origin address for data
uint16_t *pHoldRegs;
modbus_msg->Except_Code = MB_DefineRegistersAddress(&pHoldRegs, modbus_msg->Addr, modbus_msg->Qnt, RegisterType_Holding); // определение адреса регистров
if(modbus_msg->Except_Code != NO_ERRORS)
return 0;
//-----------READING REGS------------
// setup output message data size
modbus_msg->ByteCnt = modbus_msg->Qnt*2; // *2 because we transmit 8 bits, not 16 bits
// read data
int i;
for (i = 0; i<modbus_msg->Qnt; i++)
{
modbus_msg->DATA[i] = *(pHoldRegs++);
}
return 1;
}
/**
* @brief Proccess command Read Input Registers (04 - 0x04).
* @param modbus_msg - указатель на структуру собщения modbus.
* @return fMessageHandled - статус о результате обработки комманды.
* @details Обработка команды Read Input Registers.
*/
uint8_t MB_Read_Input_Regs(RS_MsgTypeDef *modbus_msg)
{
//---------CHECK FOR ERRORS----------
// get origin address for data
uint16_t *pInRegs;
modbus_msg->Except_Code = MB_DefineRegistersAddress(&pInRegs, modbus_msg->Addr, modbus_msg->Qnt, RegisterType_Input); // определение адреса регистров
if(modbus_msg->Except_Code != NO_ERRORS)
return 0;
//-----------READING REGS------------
// setup output message data size
modbus_msg->ByteCnt = modbus_msg->Qnt*2; // *2 because we transmit 8 bits, not 16 bits
// read data
int i;
for (i = 0; i<modbus_msg->Qnt; i++)
{
if(*((int16_t *)pInRegs) > 0)
modbus_msg->DATA[i] = (*pInRegs++);
else
modbus_msg->DATA[i] = (*pInRegs++);
}
return 1;
}
/**
* @brief Proccess command Write Single Coils (05 - 0x05).
* @param modbus_msg - указатель на структуру собщения modbus.
* @return fMessageHandled - статус о результате обработки комманды.
* @details Обработка команды Write Single Coils.
*/
uint8_t MB_Write_Single_Coil(RS_MsgTypeDef *modbus_msg)
{
//---------CHECK FOR ERRORS----------
if ((modbus_msg->Qnt != 0x0000) && (modbus_msg->Qnt != 0xFF00))
{
modbus_msg->Except_Code = ILLEGAL_DATA_VALUE;
return 0;
}
// define position of coil
uint16_t *coils;
uint16_t start_shift = 0; // shift in coils register
modbus_msg->Except_Code = MB_DefineCoilsAddress(&coils, modbus_msg->Addr, 0, &start_shift, 1);
if(modbus_msg->Except_Code != NO_ERRORS)
return 0;
//----------WRITTING COIL------------
if(modbus_msg->Qnt == 0xFF00)
*(coils) |= 1<<start_shift; // write flags corresponding to received data
else
*(coils) &= ~(1<<start_shift); // write flags corresponding to received data
return 1;
}
/**
* @brief Proccess command Write Single Register (06 - 0x06).
* @param modbus_msg - указатель на структуру собщения modbus.
* @return fMessageHandled - статус о результате обработки комманды.
* @details Обработка команды Write Single Register.
*/
uint8_t MB_Write_Single_Reg(RS_MsgTypeDef *modbus_msg)
{
// get origin address for data
uint16_t *pHoldRegs;
modbus_msg->Except_Code = MB_DefineRegistersAddress(&pHoldRegs, modbus_msg->Addr, 1, RegisterType_Holding); // определение адреса регистров
if(modbus_msg->Except_Code != NO_ERRORS)
return 0;
//-----------WRITTING REG------------
*(pHoldRegs) = modbus_msg->Qnt;
return 1;
}
/**
* @brief Proccess command Write Multiple Coils (15 - 0x0F).
* @param modbus_msg - указатель на структуру собщения modbus.
* @return fMessageHandled - статус о результате обработки комманды.
* @details Обработка команды Write Multiple Coils.
*/
uint8_t MB_Write_Miltuple_Coils(RS_MsgTypeDef *modbus_msg)
{
//---------CHECK FOR ERRORS----------
if (modbus_msg->ByteCnt != Divide_Up(modbus_msg->Qnt, 8))
{ // if quantity too large OR if quantity and bytes count arent match
modbus_msg->Except_Code = ILLEGAL_DATA_VALUE;
return 0;
}
// define position of coil
uint16_t *coils; // pointer to coils
uint16_t start_shift = 0; // shift in coils register
modbus_msg->Except_Code = MB_DefineCoilsAddress(&coils, modbus_msg->Addr, modbus_msg->Qnt, &start_shift, 1);
if(modbus_msg->Except_Code != NO_ERRORS)
return 0;
//----------WRITTING COILS-----------
// create mask for coils
uint16_t mask_for_coils = 0; // mask for coils that've been chosen
uint32_t setted_coils = 0; // value of setted coils
uint16_t temp_reg = 0; // temp register for saving coils that hasnt been chosen
uint16_t coil_cnt = 0; // counter for processed coils
// cycle until all registers with requered coils would be processed
int shift = start_shift; // set shift to first coil in first register
for(int ind = 0; ind <= Divide_Up(start_shift + modbus_msg->Qnt, 16); ind++)
{
//----SET MASK FOR COILS REGISTER----
mask_for_coils = 0;
for(; shift < 0x10; shift++)
{
mask_for_coils |= 1<<(shift); // choose certain coil
if(++coil_cnt >= modbus_msg->Qnt)
break;
}
shift = 0; // set shift to zero for the next step
//-----------WRITE COILS-------------
// get current coils
temp_reg = *(coils+ind);
// set coils
setted_coils = ByteSwap16(modbus_msg->DATA[ind]) << start_shift;
if(ind > 0)
{
setted_coils |= ((ByteSwap16(modbus_msg->DATA[ind-1]) << start_shift) >> 16);
}
// write coils
*(coils+ind) = setted_coils & mask_for_coils;
// restore untouched coils
*(coils+ind) |= temp_reg&(~mask_for_coils);
if(coil_cnt >= modbus_msg->Qnt) // if all coils written - break cycle
break; // *kind of unnecessary
}
return 1;
}
/**
* @brief Proccess command Write Multiple Registers (16 - 0x10).
* @param modbus_msg - указатель на структуру собщения modbus.
* @return fMessageHandled - статус о результате обработки комманды.
* @details Обработка команды Write Multiple Registers.
*/
uint8_t MB_Write_Miltuple_Regs(RS_MsgTypeDef *modbus_msg)
{
//---------CHECK FOR ERRORS----------
if (modbus_msg->Qnt*2 != modbus_msg->ByteCnt)
{ // if quantity and bytes count arent match
modbus_msg->Except_Code = 3;
return 0;
}
// get origin address for data
uint16_t *pHoldRegs;
modbus_msg->Except_Code = MB_DefineRegistersAddress(&pHoldRegs, modbus_msg->Addr, modbus_msg->Qnt, RegisterType_Holding); // определение адреса регистров
if(modbus_msg->Except_Code != NO_ERRORS)
return 0;
//-----------WRITTING REGS-----------
for (int i = 0; i<modbus_msg->Qnt; i++)
{
*(pHoldRegs++) = modbus_msg->DATA[i];
}
return 1;
}
void MB_WriteObjectToMessage(char *mbdata, unsigned *ind, MB_DeviceObjectTypeDef *obj)
{
mbdata[(*ind)++] = obj->length;
for (int i = 0; i < obj->length; i++)
{
mbdata[(*ind)++] = obj->name[i];
}
}
/**
* @brief Proccess command Read Device Identification (43/14 - 0x2B/0E).
* @param modbus_msg - указатель на структуру собщения modbus.
* @return fMessageHandled - статус о результате обработки комманды.
* @details Обработка команды Write Single Register.
*/
uint8_t MB_Read_Device_Identification(RS_MsgTypeDef *modbus_msg)
{
char *mbdata = (char *)modbus_msg->DATA;
unsigned ind = 0;
switch(modbus_msg->DevId.ReadDevId)
{
case MB_BASIC_IDENTIFICATION:
mbdata[ind++] = 0x00;
MB_WriteObjectToMessage(mbdata, &ind, &MB_INFO.VendorName);
mbdata[ind++] = 0x01;
MB_WriteObjectToMessage(mbdata, &ind, &MB_INFO.ProductCode);
mbdata[ind++] = 0x02;
MB_WriteObjectToMessage(mbdata, &ind, &MB_INFO.Revision);
modbus_msg->DevId.NumbOfObj = 3;
break;
case MB_REGULAR_IDENTIFICATION:
mbdata[ind++] = 0x03;
MB_WriteObjectToMessage(mbdata, &ind, &MB_INFO.VendorUrl);
mbdata[ind++] = 0x04;
MB_WriteObjectToMessage(mbdata, &ind, &MB_INFO.ProductName);
mbdata[ind++] = 0x05;
MB_WriteObjectToMessage(mbdata, &ind, &MB_INFO.ModelName);
mbdata[ind++] = 0x06;
MB_WriteObjectToMessage(mbdata, &ind, &MB_INFO.UserApplicationName);
modbus_msg->DevId.NumbOfObj = 4;
break;
default:
return 0;
}
modbus_msg->ByteCnt = ind;
return 1;
}
/**
* @brief Respond accord to received message.
* @param hRS - указатель на хендлер RS.
* @param RS_msg - указатель на структуру сообщения.
* @return RS_RES - статус о результате ответа на комманду.
* @details Обработка принятой комманды и ответ на неё.
*/
RS_StatusTypeDef RS_Response(RS_HandleTypeDef *hmodbus, RS_MsgTypeDef *modbus_msg)
{
RS_StatusTypeDef MB_RES = 0;
hmodbus->f.MessageHandled = 0;
hmodbus->f.EchoResponse = 0;
RS_Reset_TX_Flags(hmodbus); // reset flag for correct transmit
if(modbus_msg->Func_Code < ERR_VALUES_START)// if no errors after parsing
{
switch (modbus_msg->Func_Code)
{
// Read Coils
case MB_R_COILS:
hmodbus->f.MessageHandled = MB_Read_Coils(hmodbus->pMessagePtr);
break;
// Read Hodling Registers
case MB_R_HOLD_REGS:
hmodbus->f.MessageHandled = MB_Read_Hold_Regs(hmodbus->pMessagePtr);
break;
case MB_R_IN_REGS:
hmodbus->f.MessageHandled = MB_Read_Input_Regs(hmodbus->pMessagePtr);
break;
// Write Single Coils
case MB_W_COIL:
hmodbus->f.MessageHandled = MB_Write_Single_Coil(hmodbus->pMessagePtr);
if(hmodbus->f.MessageHandled)
{
hmodbus->f.EchoResponse = 1;
hmodbus->RS_Message_Size -= 2; // echo response if write ok (minus 2 cause of two CRC bytes)
}
break;
case MB_W_HOLD_REG:
hmodbus->f.MessageHandled = MB_Write_Single_Reg(hmodbus->pMessagePtr);
if(hmodbus->f.MessageHandled)
{
hmodbus->f.EchoResponse = 1;
hmodbus->RS_Message_Size -= 2; // echo response if write ok (minus 2 cause of two CRC bytes)
}
break;
// Write Multiple Coils
case MB_W_COILS:
hmodbus->f.MessageHandled = MB_Write_Miltuple_Coils(hmodbus->pMessagePtr);
if(hmodbus->f.MessageHandled)
{
hmodbus->f.EchoResponse = 1;
hmodbus->RS_Message_Size = 6; // echo response if write ok (withous data bytes)
}
break;
// Write Multiple Registers
case MB_W_HOLD_REGS:
hmodbus->f.MessageHandled = MB_Write_Miltuple_Regs(hmodbus->pMessagePtr);
if(hmodbus->f.MessageHandled)
{
hmodbus->f.EchoResponse = 1;
hmodbus->RS_Message_Size = 6; // echo response if write ok (withous data bytes)
}
break;
case MB_R_DEVICE_INFO:
hmodbus->f.MessageHandled = MB_Read_Device_Identification(hmodbus->pMessagePtr);
break;
/* unknown func code */
default: modbus_msg->Except_Code = 0x01; /* set exception code: illegal function */
}
if(hmodbus->f.MessageHandled == 0)
{
modbus_msg->Func_Code += ERR_VALUES_START;
}
else
{
}
}
// if we need response - check that transmit isnt busy
if( RS_Is_TX_Busy(hmodbus) )
RS_Abort(hmodbus, ABORT_TX); // if tx busy - set it free
// Transmit right there, or sets (fDeferredResponse) to transmit response in main code
MB_RES = RS_Handle_Transmit_Start(hmodbus, modbus_msg);
hmodbus->RS_STATUS = MB_RES;
return MB_RES;
}
/**
* @brief Collect message in buffer to transmit it.
* @param hRS - указатель на хендлер RS.
* @param RS_msg - указатель на структуру сообщения.
* @param msg_uart_buff - указатель на буффер UART.
* @return RS_RES - статус о результате заполнения буфера.
* @details Заполнение буффера UART из структуры сообщения.
*/
RS_StatusTypeDef RS_Collect_Message(RS_HandleTypeDef *hmodbus, RS_MsgTypeDef *modbus_msg, uint8_t *modbus_uart_buff)
{
int ind = 0; // ind for modbus-uart buffer
if(hmodbus->f.EchoResponse && hmodbus->f.MessageHandled) // if echo response need
ind = hmodbus->RS_Message_Size;
else
{
//------INFO ABOUT DATA/MESSAGE------
//-----------[first bytes]-----------
// set ID of message/user
modbus_uart_buff[ind++] = modbus_msg->MbAddr;
// set dat or err response
modbus_uart_buff[ind++] = modbus_msg->Func_Code;
if (modbus_msg->Func_Code < ERR_VALUES_START) // if no error occur
{
// fill modbus header
if(modbus_msg->Func_Code == MB_R_DEVICE_INFO) // devide identification header
{
modbus_uart_buff[ind++] = modbus_msg->DevId.MEI_Type;
modbus_uart_buff[ind++] = modbus_msg->DevId.ReadDevId;
modbus_uart_buff[ind++] = modbus_msg->DevId.Conformity;
modbus_uart_buff[ind++] = modbus_msg->DevId.MoreFollows;
modbus_uart_buff[ind++] = modbus_msg->DevId.NextObjId;
modbus_uart_buff[ind++] = modbus_msg->DevId.NumbOfObj;
if (modbus_msg->ByteCnt > DATA_SIZE*2) // if ByteCnt less than DATA_SIZE
{
return RS_COLLECT_MSG_ERR;
}
//---------------DATA----------------
//-----------[data bytes]------------
uint8_t *tmp_data_addr = (uint8_t *)modbus_msg->DATA;
for(int i = 0; i < modbus_msg->ByteCnt; i++) // filling buffer with data
{ // set data
modbus_uart_buff[ind++] = *tmp_data_addr;
tmp_data_addr++;
}
}
else // modbus data header
{
// set size of received data
if (modbus_msg->ByteCnt <= DATA_SIZE*2) // if ByteCnt less than DATA_SIZE
modbus_uart_buff[ind++] = modbus_msg->ByteCnt;
else // otherwise return data_size err
{
return RS_COLLECT_MSG_ERR;
}
//---------------DATA----------------
//-----------[data bytes]------------
uint16_t *tmp_data_addr = (uint16_t *)modbus_msg->DATA;
for(int i = 0; i < modbus_msg->ByteCnt; i++) // filling buffer with data
{ // set data
if (i%2 == 0) // HI byte
modbus_uart_buff[ind++] = (*tmp_data_addr)>>8;
else // LO byte
{
modbus_uart_buff[ind++] = *tmp_data_addr;
tmp_data_addr++;
}
}
}
}
else // if some error occur
{ // send expection code
modbus_uart_buff[ind++] = modbus_msg->Except_Code;
}
}
//---------------CRC----------------
//---------[last 16 bytes]----------
// calc crc of received data
uint16_t CRC_VALUE = crc16(modbus_uart_buff, ind);
// write crc to message structure and modbus-uart buffer
modbus_msg->MB_CRC = CRC_VALUE;
modbus_uart_buff[ind++] = CRC_VALUE;
modbus_uart_buff[ind++] = CRC_VALUE >> 8;
hmodbus->RS_Message_Size = ind;
return RS_OK; // returns ok
}
/**
* @brief Parse message from buffer to process it.
* @param hRS - указатель на хендлер RS.
* @param RS_msg - указатель на структуру сообщения.
* @param msg_uart_buff - указатель на буффер UART.
* @return RS_RES - статус о результате заполнения структуры.
* @details Заполнение структуры сообщения из буффера UART.
*/
RS_StatusTypeDef RS_Parse_Message(RS_HandleTypeDef *hmodbus, RS_MsgTypeDef *modbus_msg, uint8_t *modbus_uart_buff)
{
uint32_t check_empty_buff;
int ind = 0; // ind for modbus-uart buffer
//-----INFO ABOUT DATA/MESSAGE-------
//-----------[first bits]------------
// get ID of message/user
modbus_msg->MbAddr = modbus_uart_buff[ind++];
if(modbus_msg->MbAddr != hmodbus->ID)
return RS_SKIP;
// get func code
modbus_msg->Func_Code = modbus_uart_buff[ind++];
if(modbus_msg->Func_Code == MB_R_DEVICE_INFO) // if it device identification request
{
modbus_msg->DevId.MEI_Type = modbus_uart_buff[ind++];
modbus_msg->DevId.ReadDevId = modbus_uart_buff[ind++];
modbus_msg->DevId.NextObjId = modbus_uart_buff[ind++];
modbus_msg->ByteCnt = 0;
}
else // if its classic modbus request
{
// get address from CMD
modbus_msg->Addr = modbus_uart_buff[ind++] << 8;
modbus_msg->Addr |= modbus_uart_buff[ind++];
// get address from CMD
modbus_msg->Qnt = modbus_uart_buff[ind++] << 8;
modbus_msg->Qnt |= modbus_uart_buff[ind++];
}
if(hmodbus->f.RX_Half == 0) // if all message received
{
//---------------DATA----------------
// (optional)
if (modbus_msg->ByteCnt != 0)
{
ind++; // increment ind for data_size byte
//check that data size is correct
if (modbus_msg->ByteCnt > DATA_SIZE*2)
{
modbus_msg->Func_Code += ERR_VALUES_START;
return RS_PARSE_MSG_ERR;
}
uint16_t *tmp_data_addr = (uint16_t *)modbus_msg->DATA;
for(int i = 0; i < modbus_msg->ByteCnt; i++) // /2 because we transmit 8 bits, not 16 bits
{ // set data
if (i%2 == 0)
*tmp_data_addr = ((uint16_t)modbus_uart_buff[ind++] << 8);
else
{
*tmp_data_addr |= modbus_uart_buff[ind++];
tmp_data_addr++;
}
}
}
//---------------CRC----------------
//----------[last 16 bits]----------
// calc crc of received data
uint16_t CRC_VALUE = crc16(modbus_uart_buff, ind);
// get crc of received data
modbus_msg->MB_CRC = modbus_uart_buff[ind++];
modbus_msg->MB_CRC |= modbus_uart_buff[ind++] << 8;
// compare crc
if (modbus_msg->MB_CRC != CRC_VALUE)
{
modbus_msg->Func_Code += ERR_VALUES_START;
}
// hmodbus->MB_RESPONSE = MB_CRC_ERR; // set func code - error about wrong crc
// check is buffer empty
check_empty_buff = 0;
for(int i=0; i<ind;i++)
check_empty_buff += modbus_uart_buff[i];
// if(check_empty_buff == 0)
// hmodbus->MB_RESPONSE = MB_EMPTY_MSG; //
}
return RS_OK;
}
/**
* @brief Define size of RX Message that need to be received.
* @param hRS - указатель на хендлер RS.
* @param rx_data_size - указатель на переменную для записи кол-ва байт для принятия.
* @return RS_RES - статус о корректности рассчета кол-ва байт для принятия.
* @details Определение сколько байтов надо принять по протоколу.
*/
RS_StatusTypeDef RS_Define_Size_of_RX_Message(RS_HandleTypeDef *hmodbus, uint32_t *rx_data_size)
{
RS_StatusTypeDef MB_RES = 0;
MB_RES = RS_Parse_Message(hmodbus, hmodbus->pMessagePtr, hmodbus->pBufferPtr);
if(MB_RES == RS_SKIP) // if message not for us
return MB_RES; // return
if ((hmodbus->pMessagePtr->Func_Code & ~ERR_VALUES_START) < 0x0F)
{
hmodbus->pMessagePtr->ByteCnt = 0;
*rx_data_size = 1;
}
else
{
hmodbus->pMessagePtr->ByteCnt = hmodbus->pBufferPtr[RX_FIRST_PART_SIZE-1]; // get numb of data in command
// +1 because that defines is size, not ind.
*rx_data_size = hmodbus->pMessagePtr->ByteCnt + 2;
}
if(hmodbus->pMessagePtr->Func_Code == MB_R_DEVICE_INFO)
{
*rx_data_size = 0;
}
hmodbus->RS_Message_Size = RX_FIRST_PART_SIZE + *rx_data_size; // size of whole message
return RS_OK;
}
//-----------------------------FOR USER------------------------------
//-------------------------------------------------------------------
void MB_DevoceInentificationInit(void)
{
MB_INFO.VendorName.name = MODBUS_VENDOR_NAME;
MB_INFO.ProductCode.name = MODBUS_PRODUCT_CODE;
MB_INFO.Revision.name = MODBUS_REVISION;
MB_INFO.VendorUrl.name = MODBUS_VENDOR_URL;
MB_INFO.ProductName.name = MODBUS_PRODUCT_NAME;
MB_INFO.ModelName.name = MODBUS_MODEL_NAME;
MB_INFO.UserApplicationName.name = MODBUS_USER_APPLICATION_NAME;
MB_INFO.VendorName.length = sizeof(MODBUS_VENDOR_NAME);
MB_INFO.ProductCode.length = sizeof(MODBUS_PRODUCT_CODE);
MB_INFO.Revision.length = sizeof(MODBUS_REVISION);
MB_INFO.VendorUrl.length = sizeof(MODBUS_VENDOR_URL);
MB_INFO.ProductName.length = sizeof(MODBUS_PRODUCT_NAME);
MB_INFO.ModelName.length = sizeof(MODBUS_MODEL_NAME);
MB_INFO.UserApplicationName.length = sizeof(MODBUS_USER_APPLICATION_NAME);
}

View File

@@ -1,376 +0,0 @@
/**
**************************************************************************
* @file modbus.h
* @brief Заголовочный файл модуля MODBUS.
* @details Данный файл необходимо подключить в rs_message.h. После подключать
* rs_message.h к основному проекту.
*
* @defgroup MODBUS
* @brief Modbus stuff
*
*************************************************************************/
#ifndef __MODBUS_H_
#define __MODBUS_H_
#include "modbus_config.h"
#include "modbus_data.h"
//#include "settings.h" // for modbus settings
/**
* @addtogroup MODBUS_SETTINGS
* @ingroup MODBUS
* @brief Some defines for modbus
@{
*/
/////////////////////////////////////////////////////////////////////
//////////////////////////---SETTINGS---/////////////////////////////
// USER SETTINGS FOR MODBUS IN interface_config.h
//////////////////////////---SETTINGS---/////////////////////////////
/////////////////////////////////////////////////////////////////////
/////////////////////---USER MESSAGE DEFINES---//////////////////////
//-------------DEFINES FOR STRUCTURE----------------
/* defines for structure of modbus message */
#define MbAddr_SIZE 1 ///< size of (MbAddr)
#define Func_Code_SIZE 1 ///< size of (Func_Code)
#define Addr_SIZE 2 ///< size of (Addr)
#define Qnt_SIZE 2 ///< size of (Qnt)
#define ByteCnt_SIZE 1 ///< size of (ByteCnt)
#define DATA_SIZE 125 ///< maximum number of data: DWORD (NOT MESSAGE SIZE)
#define CRC_SIZE 2 ///< size of (MB_CRC) in bytes
/** @brief Size of whole message */
#define INFO_SIZE_MAX (MbAddr_SIZE+Func_Code_SIZE+Addr_SIZE+Qnt_SIZE+ByteCnt_SIZE)
/** @brief Size of first part of message that will be received
first receive info part of message, than defines size of rest message*/
#define RX_FIRST_PART_SIZE INFO_SIZE_MAX
/** @brief Size of buffer: max size of whole message */
#define MSG_SIZE_MAX (INFO_SIZE_MAX + DATA_SIZE*2 + CRC_SIZE) // max possible size of message
/** @brief Structure for modbus exception codes */
typedef enum //MB_ExceptionTypeDef
{
// reading
NO_ERRORS = 0x00, ///< no errors
ILLEGAL_FUNCTION = 0x01, ///< Принятый код функции не может быть обработан
ILLEGAL_DATA_ADDRESS = 0x02, ///< Адрес данных, указанный в запросе, недоступен
ILLEGAL_DATA_VALUE = 0x03, ///< Значение, содержащееся в поле данных запроса, является недопустимой величиной
SLAVE_DEVICE_FAILURE = 0x04, ///< Невосстанавливаемая ошибка имела место, пока ведомое устройство пыталось выполнить затребованное действие
// ACKNOWLEDGE = 0x05, ///< idk
// SLAVE_DEVICE_BUSY = 0x06, ///< idk
// MEMORY_PARITY_ERROR = 0x08, ///< idk
}MB_ExceptionTypeDef;
#define ERR_VALUES_START 0x80U ///< from this value starts error func codes
/** @brief Structure for modbus func codes */
typedef enum //MB_FunctonTypeDef
{
/* COMMANDS */
// reading
MB_R_COILS = 0x01, ///< Чтение битовых ячеек
MB_R_DISC_IN = 0x02, ///< Чтение дискретных входов
#ifndef MODBUS_SWITCH_COMMAND_R_IN_REGS_AND_R_HOLD_REGS
MB_R_HOLD_REGS = 0x03, ///< Чтение входных регистров
MB_R_IN_REGS = 0x04, ///< Чтение регистров хранения
#else
MB_R_HOLD_REGS = 0x04, ///< Чтение входных регистров
MB_R_IN_REGS = 0x03, ///< Чтение регистров хранения
#endif
// writting
MB_W_COIL = 0x05, ///< Запись битовой ячейки
MB_W_HOLD_REG = 0x06, ///< Запись одиночного регистра
MB_W_COILS = 0x0F, ///< Запись нескольких битовых ячеек
MB_W_HOLD_REGS = 0x10, ///< Запись нескольких регистров
MB_R_DEVICE_INFO = 0x2B, ///< Чтения информации об устройстве
/* ERRORS */
// error reading
MB_ERR_R_COILS = MB_R_COILS + ERR_VALUES_START, ///< Ошибка чтения битовых ячеек
MB_ERR_R_DISC_IN = MB_R_DISC_IN + ERR_VALUES_START, ///< Ошибка чтения дискретных входов
MB_ERR_R_IN_REGS = MB_R_IN_REGS + ERR_VALUES_START, ///< Ошибка чтения регистров хранения
MB_ERR_R_HOLD_REGS = MB_R_HOLD_REGS + ERR_VALUES_START, ///< Ошибка чтения входных регистров
// error writting
MB_ERR_W_COIL = MB_W_COIL + ERR_VALUES_START, ///< Ошибка записи битовой ячейки
MB_ERR_W_HOLD_REG = MB_W_HOLD_REG + ERR_VALUES_START, ///< Ошибка записи одиночного регистра
MB_ERR_W_COILS = MB_W_COILS + ERR_VALUES_START, ///< Ошибка записи нескольких битовых ячеек
MB_ERR_W_HOLD_REGS = MB_W_HOLD_REGS + ERR_VALUES_START, ///< Ошибка записи нескольких регистров
}MB_FunctonTypeDef;
/** @brief Structure for MEI func codes */
typedef enum //MB_FunctonTypeDef
{
MEI_DEVICE_IDENTIFICATION = 0x0E,
}MB_MEITypeDef;
/** @brief Structure for MEI func codes */
typedef enum //MB_FunctonTypeDef
{
MB_BASIC_IDENTIFICATION = 0x01,
MB_REGULAR_IDENTIFICATION = 0x02,
/* ERRORS */
MB_ERR_BASIC_IDENTIFICATION = MB_BASIC_IDENTIFICATION + ERR_VALUES_START,
MB_ERR_REGULAR_IDENTIFICATION = MB_REGULAR_IDENTIFICATION + ERR_VALUES_START,
}MB_ConformityTypeDef;
/** @brief Structure for decive identification message type */
typedef struct
{
MB_MEITypeDef MEI_Type; ///< MEI Type assigned number for Device Identification Interface
MB_ConformityTypeDef ReadDevId;
MB_ConformityTypeDef Conformity;
uint8_t MoreFollows; ///< in this library always a zero
uint8_t NextObjId;
uint8_t NumbOfObj;
}MB_DevIdMsgTypeDef;
/** @brief Structure for modbus messsage */
typedef struct // RS_MsgTypeDef
{
uint16_t Transaction_ID; ///< Modbus TCP Transaction_ID
uint16_t Protocol_ID; ///<
uint16_t Pack_length;
uint8_t MbAddr; ///< Modbus Slave Address
MB_FunctonTypeDef Func_Code; ///< Modbus Function Code
MB_DevIdMsgTypeDef DevId; ///< Read Device Identification Header struct
uint16_t Addr; ///< Modbus Address of data
uint16_t Qnt; ///< Quantity of modbus data
uint8_t ByteCnt; ///< Quantity of bytes of data in message to transmit/receive
uint16_t DATA[DATA_SIZE]; ///< Modbus Data
MB_ExceptionTypeDef Except_Code; ///< Exception Code for the command
uint16_t MB_CRC; ///< Modbus CRC
}RS_MsgTypeDef;
//--------------------------------------------------
extern RS_MsgTypeDef MODBUS_MSG;
/////////////////////---MODBUS USER SETTINGS---//////////////////////
/** MODBUS_SETTINGS
* @}
*/
/////////////////////////////////////////////////////////////////////
////////////////////---MODBUS MESSAGE DEFINES---/////////////////////
/**
* @addtogroup MODBUS_MESSAGE_DEFINES
* @ingroup MODBUS
* @brief Some defines for modbus
@{
*/
/** @brief Structure for coils operation */
typedef enum
{
SET_COIL,
RESET_COIL,
TOOGLE_COIL,
}MB_CoilsOpTypeDef;
//--------------------------------------------------
/**
* @brief Macros to set pointer to 16-bit array
* @param _arr_ - массив регистров (16-бит).
*/
#define MB_Set_Arr16_Ptr(_arr_) ((uint16_t*)(&(_arr_)))
/**
* @brief Macros to set pointer to register
* @param _parr_ - массив регистров.
* @param _addr_ - Номер регистра (его индекс) от начала массива _arr_.
*/
#define MB_Set_Register_Ptr(_parr_, _addr_) ((uint16_t *)(_parr_)+(_addr_))
/**
* @brief Macros to set pointer to a certain register that contains certain coil
* @param _parr_ - массив коилов.
* @param _coil_ - Номер коила от начала массива _arr_.
* @note Используется вместе с @ref MB_Set_Coil_Mask
@verbatim Пояснение выражений
(_coil_/16) - get index (address shift) of register that contain certain coil
Visual explanation: 30th coil in coils registers array
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxCx
|register[0]----| |register[1]----|
|skip this------| |get this-------|
|shift to 14 bit|
@endverbatim
*/
#define MB_Set_Coil_Reg_Ptr(_parr_, _coil_) ((uint16_t *)(_parr_)+((_coil_)/16))
/**
* @brief Macros to set mask to a certain bit in coils register
* @param _coil_ - Номер коила от начала массива _arr_.
* @note Используется вместе с @ref MB_Set_Coil_Reg_Ptr
@verbatim Пояснение выражений
(16*(_coil_/16) - how many coils we need to skip. e.g. (16*30/16) - skip 16 coils from first register
_coil_-(16*(_coil_/16)) - shift to certain coil in certain register
e.g. Coil(30) gets in register[1] (30/16 = 1) coil №14 (30 - (16*30/16) = 30 - 16 = 14)
Visual explanation: 30th coil in coils registers array
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxCx
|register[0]----| |register[1]----|
|skip this------| |get this-------|
|shift to 14 bit|
@endverbatim
*/
#define MB_Set_Coil_Mask(_coil_) (1 << ( _coil_ - (16*((_coil_)/16)) ))
/**
* @brief Read Coil at its local address.
* @param _parr_ - массив коилов.
* @param _coil_ - Номер коила от начала массива _arr_.
* @return uint16_t - Возвращает запрошенный коил на 0м бите.
*
* @details Позволяет обратиться к коилу по адресу относительно _arr_.
*/
#define MB_Read_Coil_Local(_parr_, _coil_) (( *MB_Set_Coil_Reg_Ptr(_parr_, _coil_) & MB_Set_Coil_Mask(_coil_) ) >> (_coil_))
/**
* @brief Set Coil at its local address.
* @param _parr_ - указатель на массив коилов.
* @param _coil_ - Номер коила от начала массива _arr_.
*
* @details Позволяет обратиться к коилу по адресу относительно _arr_.
*/
#define MB_Set_Coil_Local(_parr_, _coil_) *MB_Set_Coil_Reg_Ptr(_parr_, _coil_) |= MB_Set_Coil_Mask(_coil_)
/**
* @brief Reset Coil at its local address.
* @param _parr_ - указатель на массив коилов.
* @param _coil_ - Номер коила от начала массива _arr_.
*
* @details Позволяет обратиться к коилу по адресу относительно _arr_.
*/
#define MB_Reset_Coil_Local(_parr_, _coil_) *MB_Set_Coil_Reg_Ptr(_parr_, _coil_) &= ~(MB_Set_Coil_Mask(_coil_))
/**
* @brief Set Coil at its local address.
* @param _parr_ - указатель на массив коилов.
* @param _coil_ - Номер коила от начала массива _arr_.
*
* @details Позволяет обратиться к коилу по адресу относительно _arr_.
*/
#define MB_Toogle_Coil_Local(_parr_, _coil_) *MB_Set_Coil_Reg_Ptr(_parr_, _coil_) ^= MB_Set_Coil_Mask(_coil_)
//--------------------------------------------------
//------------------OTHER DEFINES-------------------
#define RegisterType_Holding 0
#define RegisterType_Input 1
#define RegisterType_Discrete 2
// create hadnles and settings for uart, tim, rs with _modbus_ name
//--------------------------------------------------
#ifndef Divide_Up
/**
* @brief Calc dividing including remainder
* @param _val_ - делимое.
* @param _div_ - делитель.
* @details Если результат деления без остатка: он возвращается как есть
Если с остатком - округляется вверх
*/
//#define Divide_Up(_val_, _div_) (((_val_)%(_div_))? (_val_)/(_div_)+1 : (_val_)/_div_) /* через тернарный оператор */
#define Divide_Up(_val_, _div_) ((_val_ - 1) / _div_) + 1 /* через мат выражение */
#endif
#ifndef ByteSwap16
/**
* @brief Swap between Little Endian and Big Endian
* @param v - Переменная для свапа.
* @return v (new) - Свапнутая переменная.
* @details Переключения между двумя типами хранения слова: HI-LO байты и LO-HI байты.
*/
#define ByteSwap16(v) (((v&0xFF00) >> (8)) | ((v&0x00FF) << (8)))
#endif
/** GENERAL_MODBUS_STUFF
* @}
*/
////////////////////---MODBUS MESSAGE DEFINES---/////////////////////
/////////////////////////////////////////////////////////////////////
/////////////////////////---FUNCTIONS---/////////////////////////////
/**
* @addtogroup MODBUS_FUNCTIONS
* @ingroup MODBUS
* @brief Function for controling modbus communication
*/
//----------------FUNCTIONS FOR USER----------------
/**
* @addtogroup MODBUS_DATA_ACCESS_FUNCTIONS
* @ingroup MODBUS_FUNCTIONS
* @brief Function for user use
@{
*/
/* First set up of MODBUS */
void MODBUS_FirstInit(void);
/* Set or Reset Coil at its global address */
MB_ExceptionTypeDef MB_Write_Coil_Global(uint16_t Addr, MB_CoilsOpTypeDef WriteVal);
/* Read Coil at its global address */
uint16_t MB_Read_Coil_Global(uint16_t Addr, MB_ExceptionTypeDef *Exception);
/** MODBUS_DATA_ACCESS_FUNCTIONS
* @}
*/
//---------PROCESS MODBUS COMMAND FUNCTIONS---------
/**
* @addtogroup MODBUS_CMD_PROCESS_FUNCTIONS
* @ingroup MODBUS_FUNCTIONS
* @brief Function process commands
@{
*/
/* Check is address valid for certain array */
MB_ExceptionTypeDef MB_Check_Address_For_Arr(uint16_t Addr, uint16_t Qnt, uint16_t R_ARR_ADDR, uint16_t R_ARR_NUMB);
/* Define Address Origin for Input/Holding Registers */
MB_ExceptionTypeDef MB_DefineRegistersAddress(uint16_t **pRegs, uint16_t Addr, uint16_t Qnt, uint8_t RegisterType);
/* Define Address Origin for coils */
MB_ExceptionTypeDef MB_DefineCoilsAddress(uint16_t **pCoils, uint16_t Addr, uint16_t Qnt, uint16_t *start_shift, uint8_t WriteFlag);
/* Proccess command Read Coils (01 - 0x01) */
uint8_t MB_Read_Coils(RS_MsgTypeDef *modbus_msg);
/* Proccess command Read Holding Registers (03 - 0x03) */
uint8_t MB_Read_Hold_Regs(RS_MsgTypeDef *modbus_msg);
/* Proccess command Read Input Registers (04 - 0x04) */
uint8_t MB_Read_Input_Regs(RS_MsgTypeDef *modbus_msg);
/* Proccess command Write Single Coils (05 - 0x05) */
uint8_t MB_Write_Single_Coil(RS_MsgTypeDef *modbus_msg);
/* Proccess command Write Multiple Coils (15 - 0x0F) */
uint8_t MB_Write_Miltuple_Coils(RS_MsgTypeDef *modbus_msg);
/* Proccess command Write Multiple Register (16 - 0x10) */
uint8_t MB_Write_Miltuple_Regs(RS_MsgTypeDef *modbus_msg);
/** MODBUS_DATA_ACCESS_FUNCTIONS
* @}
*/
/////////////////////////---FUNCTIONS---/////////////////////////////
/////////////////////////////////////////////////////////////////////
/////////////////////////---CALC DEFINES---//////////////////////////
// TRACES DEFINES
#ifndef Trace_MB_UART_Enter
#define Trace_MB_UART_Enter()
#endif //Trace_MB_UART_Enter
#ifndef Trace_MB_UART_Exit
#define Trace_MB_UART_Exit()
#endif //Trace_MB_UART_Exit
#ifndef Trace_MB_TIM_Enter
#define Trace_MB_TIM_Enter()
#endif //Trace_MB_TIM_Enter
#ifndef Trace_MB_TIM_Exit
#define Trace_MB_TIM_Exit()
#endif //Trace_MB_TIM_Exit
#endif //__MODBUS_H_

View File

@@ -1,33 +1,60 @@
/**
**************************************************************************
* @file interface_config.h
* @brief Конфигурация для модбаса
*************************************************************************/
******************************************************************************
* @file modbus_config.h
* @brief Конфигурационные параметры Modbus устройства
******************************************************************************
@addtogroup MODBUS_CONFIGS Modbus configs
@ingroup MODBUS
@brief Конфигурация библиотеки
@{
******************************************************************************
* @details
Файл содержит настройки для работы Modbus:
- Подключение библиотек контроллера
- ID устройства и таймауты
- Строковые идентификаторы (Vendor, Product, Revision)
- Настройки периферии (UART, TIMER)
- Подключение модулей Modbus
- Опциональные функции (переключение команд 0x03/0x04)
******************************************************************************/
#ifndef _MODBUS_CONFIG_H_
#define _MODBUS_CONFIG_H_
#include "stm32f1xx_hal.h"
// MODBUS PARAMS
#define MODBUS_DEVICE_ID 1 ///< девайс текущего устройства
#define MODBUS_TIMEOUT 2000 ///< максимальнйы тайтаут MB в тиках таймера
// Общие параметры
#define MODBUS_DEVICE_ID 3 ///< Адрес устройства в сети Modbus
#define MODBUS_TIMEOUT 5000 ///< Таймаут в тиках таймера
// STRING OBJECTS MODBUS
// Строковые идентификаторы устройства
#define MODBUS_VENDOR_NAME "NIO-12"
#define MODBUS_PRODUCT_CODE ""
#define MODBUS_REVISION "Ver. 1.0"
#define MODBUS_REVISION ""
#define MODBUS_VENDOR_URL ""
#define MODBUS_PRODUCT_NAME ""
#define MODBUS_MODEL_NAME "STM32F103"
#define MODBUS_MODEL_NAME ""
#define MODBUS_USER_APPLICATION_NAME ""
// PERIPH FUNCTIONS AND HANDLERS
#define RS_UART_Init MX_USART1_UART_Init //инициализация uart
#define RS_UART_DeInit HAL_UART_MspDeInit //деинициализация uart
#define RS_TIM_Init MX_TIM2_Init //инициализация таймера
#define RS_TIM_DeInit HAL_TIM_Base_MspDeInit//деинициализация таймера
#define rs_huart huart1 //используемый uart
#define rs_htim htim2 //используемый таймера
#define MODBUS_NUMB_OF_USEROBJECTS 0 ///< Количество пользовательских объектов
#define MODBUS_USEROBJECT_0_NAME "" ///< Строка пользовательского идентификатора 0. По аналогии можно определить строки до <=128 USEROBJECT
// Периферия (опционально)
#define mb_huart huart1 ///< Удобный дефайн для модбасовского uart
#define mb_htim htim2 ///< Удобный дефайн для модбасовского таймера
//#define RS_EnableReceive() ///< Функция изменения направления передачи на ПРИЕМ для RS-485
//#define RS_EnableTransmit() ///< Функция изменения направления передачи на ПЕРЕДАЧУ для RS-485
// Модули modbus
#define MODBUS_ENABLE_SLAVE ///< Включить обработку СЛЕЙВ режима
//#define MODBUS_ENABLE_MASTER ///< Включить обработку МАСТЕР режима
#define MODBUS_ENABLE_COILS ///< Включить обработку коилов
#define MODBUS_ENABLE_HOLDINGS ///< Включить обработку регистров хранения
#define MODBUS_ENABLE_INPUTS ///< Включить обработку входных регистров
#define MODBUS_ENABLE_DEVICE_IDENTIFICATIONS ///< Включить обработку идентификаторы устройства
#define MODBUS_ENABLE_DIAGNOSTICS ///< Включить обработку диагностики модбас
//#define MODBUS_PROTOCOL_TCP ///< Включить TCP-протокол, иначе - RTU
/**
* @brief Поменять комманды 0x03 и 0x04 местами (для LabView терминалки от двигателей)
@@ -41,4 +68,4 @@
#endif //_MODBUS_CONFIG_H_
#endif //_MODBUS_CONFIG_H_

View File

@@ -0,0 +1,141 @@
/**
******************************************************************************
* @file modbus_data.c
* @brief Функции доступа к данным Modbus
******************************************************************************
* @details
Модуль реализует функции валидации адресов и доступа к данным:
- Проверка корректности запрашиваемых адресов
- Определение указателей на реальные данные в памяти
- Поддержка пользовательских массивов регистров и coils
@section Валидация адресов:
- MB_Check_Address_For_Arr() - проверка принадлежности адреса массиву
- MB_DefineRegistersAddress() - получение указателя на регистры
- MB_DefineCoilsAddress() - получение указателя на coils
******************************************************************************/
#include "modbus_core.h"
#include "modbus_coils.h"
#include "modbus_holdregs.h"
#include "modbus_inputregs.h"
#include "modbus_devid.h"
/**
* @brief Check is address valid for certain array.
* @param Addr Начальный адресс.
* @param Qnt Количество запрашиваемых элементов.
* @param R_ARR_ADDR Начальный адресс массива R_ARR.
* @param R_ARR_NUMB Количество элементов в массиве R_ARR.
* @return ExceptionCode - ET_ILLEGAL_DATA_ADRESS если адресс недействителен, и ET_NO_ERRORS если все ок.
*
* @details Позволяет определить, принадлежит ли адресс Addr массиву R_ARR:
* Если адресс Addr находится в диапазоне адрессов массива R_ARR, то возвращаем NO_ERROR.
* Если адресс Addr находится за пределами адрессов массива R_ARR - ET_ILLEGAL_DATA_ADDRESSю.
*/
MB_ExceptionTypeDef MB_Check_Address_For_Arr(uint16_t Addr, uint16_t Qnt, uint16_t R_ARR_ADDR, uint16_t R_ARR_NUMB)
{
// if address from this array
if(Addr >= R_ARR_ADDR)
{
// if quantity too big return error
if ((Addr - R_ARR_ADDR) + Qnt > R_ARR_NUMB)
{
return ET_ILLEGAL_DATA_ADDRESS; // return exception code
}
// if all ok - return no errors
return ET_NO_ERRORS;
}
// if address isnt from this array return error
else
return ET_ILLEGAL_DATA_ADDRESS; // return exception code
}
/**
* @brief Define Address Origin for Input/Holding Registers
* @param pRegs Указатель на указатель регистров.
* @param Addr Адрес начального регистра.
* @param Qnt Количество запрашиваемых регистров.
* @param WriteFlag Флаг регистр нужны для чтения или записи.
* @return ExceptionCode Код исключения если есть, и ET_NO_ERRORS если нет.
*
* @details Определение адреса начального регистра.
* @note WriteFlag пока не используется.
*/
MB_ExceptionTypeDef MB_DefineRegistersAddress(uint16_t **pRegs, uint16_t Addr, uint16_t Qnt, uint8_t RegisterType)
{
/* check quantity error */
if (Qnt > DATA_SIZE)
{
return ET_ILLEGAL_DATA_VALUE; // return exception code
}
if(RegisterType == RegisterType_Holding)
{
// Default holding registers
if(MB_Check_Address_For_Arr(Addr, Qnt, R_HOLDING_ADDR, R_HOLDING_QNT) == ET_NO_ERRORS)
{
*pRegs = MB_Set_Register_Ptr(&MB_DATA.HoldRegs, Addr - R_HOLDING_ADDR); // указатель на выбранный по Addr регистр
}
// if address doesnt match any array - return illegal data address response
else
{
return ET_ILLEGAL_DATA_ADDRESS;
}
}
else if(RegisterType == RegisterType_Input)
{
// Default input registers
if(MB_Check_Address_For_Arr(Addr, Qnt, R_INPUT_ADDR, R_INPUT_QNT) == ET_NO_ERRORS)
{
*pRegs = MB_Set_Register_Ptr(&MB_DATA.InRegs, Addr - R_INPUT_ADDR); // указатель на выбранный по Addr регистр
}
// if address doesnt match any array - return illegal data address response
else
{
return ET_ILLEGAL_DATA_ADDRESS;
}
}
else
{
return ET_ILLEGAL_FUNCTION;
}
// if found requeried array return no err
return ET_NO_ERRORS; // return no errors
}
/**
* @brief Define Address Origin for coils
* @param pCoils Указатель на указатель коилов.
* @param Addr Адресс начального коила.
* @param Qnt Количество запрашиваемых коилов.
* @param start_shift Указатель на переменную содержащую сдвиг внутри регистра для начального коила.
* @param WriteFlag Флаг коилы нужны для чтения или записи.
* @return ExceptionCode Код исключения если есть, и ET_NO_ERRORS если нет.
*
* @details Определение адреса начального регистра запрашиваемых коилов.
* @note WriteFlag используется для определния регистров GPIO: ODR или IDR.
*/
MB_ExceptionTypeDef MB_DefineCoilsAddress(uint16_t **pCoils, uint16_t Addr, uint16_t Qnt, uint16_t *start_shift, uint8_t WriteFlag)
{
/* check quantity error */
if (Qnt > 2000)
{
return ET_ILLEGAL_DATA_VALUE; // return exception code
}
// Default coils
if(MB_Check_Address_For_Arr(Addr, Qnt, C_CONTROL_ADDR, C_CONTROL_QNT) == ET_NO_ERRORS)
{
*pCoils = MB_Set_Coil_Reg_Ptr(&MB_DATA.Coils, Addr - C_CONTROL_ADDR); // указатель на выбранный по Addr массив коилов
}
// if address doesnt match any array - return illegal data address response
else
{
return ET_ILLEGAL_DATA_ADDRESS;
}
*start_shift = Addr % 16; // set shift to requested coil
// if found requeried array return no err
return ET_NO_ERRORS; // return no errors
}

View File

@@ -1,92 +1,125 @@
/**
/**
**************************************************************************
* @file modbus_data.h
* @brief Заголовочный файл с описанием даты MODBUS.
* @details Данный файл необходимо подключается в rs_message.h. После rs_message.h
* @details Данный файл необходимо подключается в rs_message.h. После rs_message.h
* подключается к основному проекту.
*
*
* @defgroup MODBUS_DATA
* @ingroup MODBUS
* @brief Modbus data description
*
*************************************************************************/
#ifndef _MODBUS_DATA_H_
#define _MODBUS_DATA_H_
// DEFINES FOR INPUT REGISTERS ARRAYS
#define R_INPUT_ADDR 0
#define R_INPUT_QNT 2000
// DEFINES FOR HOLDING REGISTERS ARRAYS
#define R_HOLDING_ADDR 0
#define R_HOLDING_QNT 2000
// DEFINES FOR COIL ARRAYS
#define C_CONTROL_ADDR 0
#define C_CONTROL_QNT 1000
#include "stdint.h"
#include "ds18b20_driver.h"
#include "PROJ_setup.h"
//--------------DEFINES FOR REGISTERS---------------
// DEFINES FOR ARRAYS
/**
/**
* @addtogroup MODBUS_DATA_RERISTERS_DEFINES
* @ingroup MODBUS_DATA
* @brief Defines for registers
Структура дефайна адресов
@verbatim
@verbatim
Для массивов регистров:
R_<NAME_ARRAY>_ADDR - модбас адресс первого регистра в массиве
R_<NAME_ARRAY>_QNT - количество регистров в массиве
При добавлении новых массивов регистров, необходимо их добавить в функцию MB_DefineRegistersAddress
if(MB_Check_Address_For_Arr(Addr, Qnt, R_<NEW_ARRAY>_ADDR, R_<NEW_ARRAY>_QNT) == NO_ERRORS)
{
*pRegs = MB_Set_Register_Ptr(&<NEW_ARRAY>, Addr); // начало регистров хранения/входных
}
if(MB_Check_Address_For_Arr(Addr, Qnt, R_<NEW_ARRAY>_ADDR, R_<NEW_ARRAY>_QNT) == NO_ERRORS)
{
*pRegs = MB_Set_Register_Ptr(&<NEW_ARRAY>, Addr); // начало регистров хранения/входных
}
@endverbatim
* @{
*/
/**
/**
* @brief Регистры хранения
*/
#define MAX_SENSE 30
typedef struct //MB_DataInRegsTypeDef
/**
* @brief Определить размер структуры в регистрах модбас (16-бит слова)
*/
#define mb_sizeof(_struct_) (sizeof(_struct_)/sizeof(uint16_t))
/**
* @brief Определить количество резервных байт для выравнивания
* @details Выравнивает так, чтобы количество регистров в _struct_ и reserved равнялось _align_.
*
*/
#define mb_fill_rsv(_align_, _struct_) ((_align_ > mb_sizeof(_struct_)) ? (_align_ - mb_sizeof(_struct_)) : 0)
typedef __PACKED_STRUCT//MB_DataInRegsTypeDef
{
uint16_t sens_Temp[MAX_SENSE];
uint16_t UzptPLUS;
uint16_t UzptMINUS;
uint16_t UzptPLUS_MIN;
}MB_DataInRegsTypeDef;
uint16_t sens_Temp[MAX_SENSE];
uint16_t reserve[mb_fill_rsv(1000, uint16_t[MAX_SENSE])];
DS18B20_Drv_t ID;
uint16_t reserve1[mb_fill_rsv(200, DS18B20_Drv_t)];
uint16_t num_Tsens;
/**
* @brief Входные регистры
} MB_DataInRegsTypeDef;
/**
* @brief Входные регистры
*/
typedef struct //MB_DataInRegsTypeDef
typedef __PACKED_STRUCT //MB_DataInRegsTypeDef
{
uint16_t set_Temp[MAX_SENSE];
uint16_t set_hyst[MAX_SENSE];
}MB_DataHoldRegsTypeDef;
uint16_t set_Temp[MAX_SENSE];
uint16_t reserve[mb_fill_rsv(100, uint16_t[MAX_SENSE])];
uint16_t set_hyst[MAX_SENSE];
uint16_t reserve1[mb_fill_rsv(100, uint16_t[MAX_SENSE])];
} MB_DataHoldRegsTypeDef;
// DEFINES FOR INPUT REGISTERS ARRAYS
#define R_INPUT_ADDR 0
#define R_INPUT_QNT 40
// DEFINES FOR HOLDING REGISTERS ARRAYS
#define R_HOLDING_ADDR 0
#define R_HOLDING_QNT 40
/** MODBUS_DATA_RERISTERS_DEFINES
* @}
* @}
*/
//----------------DEFINES FOR COILS-----------------
/**
/**
* @addtogroup MODBUS_DATA_COILS_DEFINES
* @ingroup MODBUS_DATA
* @brief Defines for coils
@verbatim
@verbatim
Структура дефайна
Для массивов коилов:
C_<NAME_ARRAY>_ADDR - модбас адресс первого коила в массиве
@@ -102,99 +135,149 @@ typedef struct //MB_DataInRegsTypeDef
@endverbatim
* @{
*/
/**
/**
* @brief Коилы
* @details Желательно с помощью reserved делать стркутуру кратной 16-битам
*/
typedef union
{
struct __packed {
unsigned state_val_01:1;
unsigned state_val_02:1;
unsigned state_val_03:1;
unsigned state_val_04:1;
unsigned state_val_05:1;
unsigned state_val_06:1;
unsigned state_val_07:1;
unsigned state_val_08:1;
unsigned state_val_09:1;
unsigned state_val_10:1;
unsigned state_val_11:1;
unsigned state_val_12:1;
unsigned state_val_13:1;
unsigned state_val_14:1;
unsigned state_val_15:1;
unsigned state_val_16:1;
} state_val_bit;
uint16_t all;
}word;
typedef struct //MB_DataCoilsTypeDef
{
word coils[2];
unsigned init_param:1;
unsigned reserved:15;
}MB_DataCoilsTypeDef;
__PACKED_STRUCT
{
unsigned state_val_01: 1;
unsigned state_val_02: 1;
unsigned state_val_03: 1;
unsigned state_val_04: 1;
unsigned state_val_05: 1;
unsigned state_val_06: 1;
unsigned state_val_07: 1;
unsigned state_val_08: 1;
unsigned state_val_09: 1;
unsigned state_val_10: 1;
unsigned state_val_11: 1;
unsigned state_val_12: 1;
unsigned state_val_13: 1;
unsigned state_val_14: 1;
unsigned state_val_15: 1;
unsigned state_val_16: 1;
} state_val_bit;
uint16_t all;
} word;
typedef union
{
__PACKED_STRUCT
{
unsigned Temp1_relay_isOn : 1;
unsigned Temp2_relay_isOn : 1;
unsigned Temp3_relay_isOn : 1;
unsigned Temp4_relay_isOn : 1;
unsigned Temp5_relay_isOn : 1;
unsigned Temp6_relay_isOn : 1;
unsigned Temp7_relay_isOn : 1;
unsigned Temp8_relay_isOn : 1;
unsigned Temp9_relay_isOn : 1;
unsigned Temp10_relay_isOn : 1;
unsigned Temp11_relay_isOn : 1;
unsigned Temp12_relay_isOn : 1;
unsigned Temp13_relay_isOn : 1;
unsigned Temp14_relay_isOn : 1;
unsigned Temp15_relay_isOn : 1;
unsigned Temp16_relay_isOn : 1;
} state_val_bit;
uint16_t all;
} RELAY_Struct;
typedef union
{
__PACKED_STRUCT
{
unsigned Temp1_isConnected : 1;
unsigned Temp2_isConnected : 1;
unsigned Temp3_isConnected : 1;
unsigned Temp4_isConnected : 1;
unsigned Temp5_isConnected : 1;
unsigned Temp6_isConnected : 1;
unsigned Temp7_isConnected : 1;
unsigned Temp8_isConnected : 1;
unsigned Temp9_isConnected : 1;
unsigned Temp10_isConnected : 1;
unsigned Temp11_isConnected : 1;
unsigned Temp12_isConnected : 1;
unsigned Temp13_isConnected : 1;
unsigned Temp14_isConnected : 1;
unsigned Temp15_isConnected : 1;
unsigned Temp16_isConnected : 1;
} state_val_bit;
uint16_t all;
} STATUS_TSENS;
typedef __PACKED_STRUCT
{
int temp ;
unsigned Temp_relay_on : 1;
unsigned Temp_relay_off : 1;
unsigned is_connect: 1;
} Temp_sens;
extern Temp_sens temp_sens ;
typedef __PACKED_STRUCT
{
word coils[3]; //48
uint16_t reserve_coils[mb_fill_rsv(128 / 16, word[3])];
STATUS_TSENS status_tSens[MAX_SENSE / 16]; //32
uint16_t reserve_status_tSens[mb_fill_rsv(128 / 16, STATUS_TSENS[MAX_SENSE / 16])];
RELAY_Struct relay_struct_on; //16 ON
uint16_t reserve_relay_struct_on[mb_fill_rsv(32 / 16, RELAY_Struct)];
RELAY_Struct relay_struct_off; //16 OFF
uint16_t reserve_relay_struct_off[mb_fill_rsv(32 / 16, RELAY_Struct)];
uint16_t reserve3[mb_fill_rsv(80 / 16, RELAY_Struct)];
unsigned init_param: 1; //384
unsigned init_Tsens: 1; //385
unsigned Save_Param_to_Flash: 1; //386
unsigned reserved2: 13;
} MB_DataCoilsTypeDef;
// DEFINES FOR COIL ARRAYS
#define C_CONTROL_ADDR 0
#define C_CONTROL_QNT 100
/** MODBUS_DATA_COILS_DEFINES
* @}
* @}
*/
//-----------MODBUS DEVICE DATA SETTING-------------
// MODBUS DATA STRUCTTURE
/**
* @brief Структура со всеми регистрами и коилами модбас
/**
* @brief Структура со всеми регистрами и коилами модбас
* @ingroup MODBUS_DATA
*/
typedef struct // tester modbus data
{
MB_DataInRegsTypeDef InRegs; ///< Modbus input registers @ref MB_DataInRegsTypeDef
MB_DataInRegsTypeDef InRegs; ///< Modbus input registers @ref MB_DataInRegsTypeDef
MB_DataCoilsTypeDef Coils; ///< Modbus coils @ref MB_DataCoilsTypeDef
MB_DataHoldRegsTypeDef HoldRegs; ///< Modbus holding registers @ref MB_DataHoldRegsTypeDef
}MB_DataStructureTypeDef;
MB_DataCoilsTypeDef Coils; ///< Modbus coils @ref MB_DataCoilsTypeDef
MB_DataHoldRegsTypeDef HoldRegs; ///< Modbus holding registers @ref MB_DataHoldRegsTypeDef
} MB_DataStructureTypeDef;
extern MB_DataStructureTypeDef MB_DATA;
/**
* @brief Структура для объекта Modbus
* @ingroup MODBUS_DATA
*/
typedef struct
{
unsigned length;
char *name;
}MB_DeviceObjectTypeDef;
/**
* @brief Структура для объектов Modbus
* @ingroup MODBUS_DATA
*/
typedef struct
{
MB_DeviceObjectTypeDef VendorName;
MB_DeviceObjectTypeDef ProductCode;
MB_DeviceObjectTypeDef Revision;
MB_DeviceObjectTypeDef VendorUrl;
MB_DeviceObjectTypeDef ProductName;
MB_DeviceObjectTypeDef ModelName;
MB_DeviceObjectTypeDef UserApplicationName;
}MB_DeviceIdentificationTypeDef;
void MB_DevoceInentificationInit(void);
#endif //_MODBUS_DATA_H_
/////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,282 @@
/**
**************************************************************************
* @file modbus_data.h
* @brief Заголовочный файл с описанием даты MODBUS.
* @details Данный файл необходимо подключается в rs_message.h. После rs_message.h
* подключается к основному проекту.
*
* @defgroup MODBUS_DATA
* @ingroup MODBUS
* @brief Modbus data description
*
*************************************************************************/
#ifndef _MODBUS_DATA_H_
#define _MODBUS_DATA_H_
// DEFINES FOR INPUT REGISTERS ARRAYS
#define R_INPUT_ADDR 0
#define R_INPUT_QNT 2000
// DEFINES FOR HOLDING REGISTERS ARRAYS
#define R_HOLDING_ADDR 0
#define R_HOLDING_QNT 2000
// DEFINES FOR COIL ARRAYS
#define C_CONTROL_ADDR 0
#define C_CONTROL_QNT 1000
#include "stdint.h"
#include "ds18b20_driver.h"
#include "PROJ_setup.h"
//--------------DEFINES FOR REGISTERS---------------
// DEFINES FOR ARRAYS
/**
* @addtogroup MODBUS_DATA_RERISTERS_DEFINES
* @ingroup MODBUS_DATA
* @brief Defines for registers
Структура дефайна адресов
@verbatim
Для массивов регистров:
R_<NAME_ARRAY>_ADDR - модбас адресс первого регистра в массиве
R_<NAME_ARRAY>_QNT - количество регистров в массиве
При добавлении новых массивов регистров, необходимо их добавить в функцию MB_DefineRegistersAddress
if(MB_Check_Address_For_Arr(Addr, Qnt, R_<NEW_ARRAY>_ADDR, R_<NEW_ARRAY>_QNT) == NO_ERRORS)
{
*pRegs = MB_Set_Register_Ptr(&<NEW_ARRAY>, Addr); // начало регистров хранения/входных
}
@endverbatim
* @{
*/
/**
* @brief Регистры хранения
*/
/**
* @brief Определить размер структуры в регистрах модбас (16-бит слова)
*/
#define mb_sizeof(_struct_) (sizeof(_struct_)/sizeof(uint16_t))
/**
* @brief Определить количество резервных байт для выравнивания
* @details Выравнивает так, чтобы количество регистров в _struct_ и reserved равнялось _align_.
*
*/
#define mb_fill_rsv(_align_, _struct_) ((_align_ > mb_sizeof(_struct_)) ? (_align_ - mb_sizeof(_struct_)) : 0)
typedef __PACKED_STRUCT//MB_DataInRegsTypeDef
{
uint16_t sens_Temp[MAX_SENSE];
uint16_t reserve[mb_fill_rsv(1000, uint16_t[MAX_SENSE])];
DS18B20_Drv_t ID;
uint16_t reserve1[mb_fill_rsv(200, DS18B20_Drv_t)];
uint16_t num_Tsens;
} MB_DataInRegsTypeDef;
/**
* @brief Входные регистры
*/
typedef __PACKED_STRUCT //MB_DataInRegsTypeDef
{
uint16_t set_Temp[MAX_SENSE];
uint16_t reserve[mb_fill_rsv(100, uint16_t[MAX_SENSE])];
uint16_t set_hyst[MAX_SENSE];
uint16_t reserve1[mb_fill_rsv(100, uint16_t[MAX_SENSE])];
} MB_DataHoldRegsTypeDef;
/** MODBUS_DATA_RERISTERS_DEFINES
* @}
*/
//----------------DEFINES FOR COILS-----------------
/**
* @addtogroup MODBUS_DATA_COILS_DEFINES
* @ingroup MODBUS_DATA
* @brief Defines for coils
@verbatim
Структура дефайна
Для массивов коилов:
C_<NAME_ARRAY>_ADDR - модбас адресс первого коила в массиве
C_<NAME_ARRAY>_QNT - количество коилов в массиве (минимум 16)
При добавлении новых массивов коилов, необходимо их добавить в функцию MB_DefineCoilsAddress
if(MB_Check_Address_For_Arr(Addr, Qnt, C_<NEW_ARRAY>_ADDR, C_<NEW_ARRAY>_QNT) == NO_ERRORS)
{
*pCoils = MB_Set_Coil_Reg_Ptr(&<NEW_ARRAY>, Addr);
}
@endverbatim
* @{
*/
/**
* @brief Коилы
* @details Желательно с помощью reserved делать стркутуру кратной 16-битам
*/
typedef union
{
__PACKED_STRUCT
{
unsigned state_val_01: 1;
unsigned state_val_02: 1;
unsigned state_val_03: 1;
unsigned state_val_04: 1;
unsigned state_val_05: 1;
unsigned state_val_06: 1;
unsigned state_val_07: 1;
unsigned state_val_08: 1;
unsigned state_val_09: 1;
unsigned state_val_10: 1;
unsigned state_val_11: 1;
unsigned state_val_12: 1;
unsigned state_val_13: 1;
unsigned state_val_14: 1;
unsigned state_val_15: 1;
unsigned state_val_16: 1;
} state_val_bit;
uint16_t all;
} word;
typedef union
{
__PACKED_STRUCT
{
unsigned Temp1_relay_isOn : 1;
unsigned Temp2_relay_isOn : 1;
unsigned Temp3_relay_isOn : 1;
unsigned Temp4_relay_isOn : 1;
unsigned Temp5_relay_isOn : 1;
unsigned Temp6_relay_isOn : 1;
unsigned Temp7_relay_isOn : 1;
unsigned Temp8_relay_isOn : 1;
unsigned Temp9_relay_isOn : 1;
unsigned Temp10_relay_isOn : 1;
unsigned Temp11_relay_isOn : 1;
unsigned Temp12_relay_isOn : 1;
unsigned Temp13_relay_isOn : 1;
unsigned Temp14_relay_isOn : 1;
unsigned Temp15_relay_isOn : 1;
unsigned Temp16_relay_isOn : 1;
} state_val_bit;
uint16_t all;
} RELAY_Struct;
typedef union
{
__PACKED_STRUCT
{
unsigned Temp1_isConnected : 1;
unsigned Temp2_isConnected : 1;
unsigned Temp3_isConnected : 1;
unsigned Temp4_isConnected : 1;
unsigned Temp5_isConnected : 1;
unsigned Temp6_isConnected : 1;
unsigned Temp7_isConnected : 1;
unsigned Temp8_isConnected : 1;
unsigned Temp9_isConnected : 1;
unsigned Temp10_isConnected : 1;
unsigned Temp11_isConnected : 1;
unsigned Temp12_isConnected : 1;
unsigned Temp13_isConnected : 1;
unsigned Temp14_isConnected : 1;
unsigned Temp15_isConnected : 1;
unsigned Temp16_isConnected : 1;
} state_val_bit;
uint16_t all;
} STATUS_TSENS;
typedef __PACKED_STRUCT
{
int temp ;
unsigned Temp_relay_on : 1;
unsigned Temp_relay_off : 1;
unsigned is_connect: 1;
} Temp_sens;
extern Temp_sens temp_sens ;
typedef __PACKED_STRUCT
{
word coils[3]; //48
uint16_t reserve1[mb_fill_rsv(128 / 16, word[3])];
STATUS_TSENS status_tSens[MAX_SENSE / 16]; //32
uint16_t reserve2[mb_fill_rsv(128 / 16, STATUS_TSENS[MAX_SENSE / 16])];
RELAY_Struct relay_struct_on; //16 ON
RELAY_Struct relay_struct_off; //16 OFF
uint16_t reserve3[mb_fill_rsv(128 / 16, RELAY_Struct[MAX_SENSE / 16 * 2])];
unsigned init_param: 1; //384
unsigned init_Tsens: 1; //385
unsigned Save_Param_to_Flash: 1; //386
unsigned reserved2: 13;
} MB_DataCoilsTypeDef;
/** MODBUS_DATA_COILS_DEFINES
* @}
*/
//-----------MODBUS DEVICE DATA SETTING-------------
// MODBUS DATA STRUCTTURE
/**
* @brief Структура со всеми регистрами и коилами модбас
* @ingroup MODBUS_DATA
*/
typedef struct // tester modbus data
{
MB_DataInRegsTypeDef InRegs; ///< Modbus input registers @ref MB_DataInRegsTypeDef
MB_DataCoilsTypeDef Coils; ///< Modbus coils @ref MB_DataCoilsTypeDef
MB_DataHoldRegsTypeDef HoldRegs; ///< Modbus holding registers @ref MB_DataHoldRegsTypeDef
} MB_DataStructureTypeDef;
extern MB_DataStructureTypeDef MB_DATA;
#endif //_MODBUS_DATA_H_
/////////////////////////////////////////////////////////////
///////////////////////TEMP/OUTDATE/OTHER////////////////////

View File

@@ -1,555 +0,0 @@
/**
**************************************************************************
* @file rs_message.c
* @brief Модуль для реализации протоколов по RS/UART.
**************************************************************************\
* @details
* Данный модуль реализует основные функции для приема и передачи сообщений
* по протоколу RS через UART в режиме прерываний. Реализована обработка
* приема и передачи данных, управление состояниями RS, а также функции для
* инициализации и управления периферией.
*
* Реализованы следующие функции:
* - RS_Receive_IT() — запуск приема данных в прерывании по UART.
* - RS_Transmit_IT() — запуск передачи данных в прерывании по UART.
* - RS_Init() — инициализация структуры RS и привязка периферии.
* - RS_ReInit_UART() — переинициализация UART и перезапуск приема данных.
* - RS_Abort() — остановка работы RS/UART с очисткой флагов и структур.
* - RS_Handle_Receive_Start() — обработка старта приема данных по RS.
*
* В модуле также определен буфер RS_Buffer[] для хранения принимаемых/передаваемых данных.
*
* @note
* Для корректной работы модуля предполагается использование соответствующих
* обработчиков прерываний UART и таймера (RS_UART_Handler(), RS_TIM_Handler()),
* которые надо вызывать с обработчиках используемой периферии
@verbatim
//-------------------Функции-------------------//
Functions: users
- RS_Parse_Message/RS_Collect_Message Заполнение структуры сообщения и буфера
- RS_Response Ответ на сообщение
- RS_Define_Size_of_RX_Message Определение размера принимаемых данных
Functions: general
- RS_Receive_IT Ожидание комманды и ответ на неё
- RS_Transmit_IT Отправление комманды и ожидание ответа
- RS_Init Инициализация переферии и структуры для RS
- RS_ReInit_UART Реинициализация UART для RS
- RS_Abort Отмена приема/передачи по ЮАРТ
- RS_Init Инициализация периферии и modbus handler
Functions: callback/handler
- RS_Handle_Receive_Start Функция для запуска приема или остановки RS
- RS_Handle_Transmit_Start Функция для запуска передачи или остановки RS
- RS_UART_RxCpltCallback Коллбек при окончании приема или передачи
RS_UART_TxCpltCallback
- RS_UART_Handler Обработчик прерывания для UART
- RS_TIM_Handler Обработчик прерывания для TIM
@endverbatim
*************************************************************************/
#include "rs_message.h"
uint8_t RS_Buffer[MSG_SIZE_MAX]; // uart buffer
extern void RS_UART_Init(void);
extern void RS_UART_DeInit(UART_HandleTypeDef *huart);
extern void RS_TIM_Init(void);
extern void RS_TIM_DeInit(TIM_HandleTypeDef *htim);
//-------------------------------------------------------------------
//-------------------------GENERAL FUNCTIONS-------------------------
/**
* @brief Start receive IT.
* @param hRS - указатель на хендлер RS.
* @param RS_msg - указатель на структуру сообщения.
* @return RS_RES - статус о состоянии RS после инициализации приема.
*/
RS_StatusTypeDef RS_Receive_IT(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg)
{
RS_StatusTypeDef RS_RES = 0;
HAL_StatusTypeDef uart_res = 0;
//-------------CHECK RS LINE----------------
// check that receive isnt busy
if( RS_Is_RX_Busy(hRS) ) // if tx busy - return busy status
return RS_BUSY;
//-----------INITIALIZE RECEIVE-------------
// if all OK: start receiving
RS_EnableReceive();
RS_Set_Busy(hRS); // set RS busy
RS_Set_RX_Flags(hRS); // initialize flags for receive
hRS->pMessagePtr = RS_msg; // set pointer to message structire for filling it from UARTHandler fucntions
// start receiving
uart_res = HAL_UART_Receive_IT(hRS->huart, hRS->pBufferPtr, RX_FIRST_PART_SIZE); // receive until ByteCnt+1 byte,
// then in Callback restart receive for rest bytes
// if receive isnt started - abort RS
if(uart_res != HAL_OK)
{
RS_RES = RS_Abort(hRS, ABORT_RS);
printf_rs_err("\n%d: Error RS: Failed to start RS receiving...", uwTick);
}
else
{
RS_RES = RS_OK;
printf_rs("\n%d: RS: Start Receiving...", uwTick);
}
hRS->RS_STATUS = RS_RES;
return RS_RES; // returns result of receive init
}
/**
* @brief Start transmit IT.
* @param hRS - указатель на хендлер RS.
* @param RS_msg - указатель на структуру сообщения.
* @return RS_RES - статус о состоянии RS после инициализации передачи.
*/
RS_StatusTypeDef RS_Transmit_IT(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg)
{
RS_StatusTypeDef RS_RES = 0;
HAL_StatusTypeDef uart_res = 0;
//-------------CHECK RS LINE----------------
// check that transmit isnt busy
if( RS_Is_TX_Busy(hRS) ) // if tx busy - return busy status
return RS_BUSY;
// check receive line
//------------COLLECT MESSAGE---------------
RS_RES = RS_Collect_Message(hRS, RS_msg, hRS->pBufferPtr);
if (RS_RES != RS_OK) // if message isnt collect - stop RS and return error in RS_RES
{// need collect message status, so doesnt write abort to RS_RES
RS_Abort(hRS, ABORT_RS);
RS_Handle_Receive_Start(hRS, hRS->pMessagePtr); // restart receive
}
else // if collect successful
{
//----------INITIALIZE TRANSMIT-------------
RS_EnableTransmit();
// for(int i = 0; i < hRS->sRS_Timeout; i++);
RS_Set_Busy(hRS); // set RS busy
RS_Set_TX_Flags(hRS); // initialize flags for transmit IT
hRS->pMessagePtr = RS_msg; // set pointer for filling given structure from UARTHandler fucntion
// if all OK: start transmitting
uart_res = HAL_UART_Transmit_IT(hRS->huart, hRS->pBufferPtr, hRS->RS_Message_Size);
// if transmit isnt started - abort RS
if(uart_res != HAL_OK)
{
RS_RES = RS_Abort(hRS, ABORT_RS);
printf_rs_err("\n%d: Error RS: Failed to start RS transmitting...", uwTick);
}
else
{
RS_RES = RS_OK;
printf_rs("\n%d: RS: Start Transmitting...", uwTick);
}
}
hRS->RS_STATUS = RS_RES;
return RS_RES; // returns result of transmit init
}
/**
* @brief Initialize UART and handle RS stucture.
* @param hRS - указатель на хендлер RS.
* @param suart - указатель на структуру с настройками UART.
* @param stim - указатель на структуру с настройками таймера.
* @param pRS_BufferPtr - указатель на буффер для приема-передачи по UART. Если он NULL, то поставиться библиотечный буфер.
* @return RS_RES - статус о состоянии RS после инициализации.
* @note Инициализация перефирии и структуры для приема-передачи по RS.
*/
RS_StatusTypeDef RS_Init(RS_HandleTypeDef *hRS, UART_HandleTypeDef *huart, TIM_HandleTypeDef *htim, uint8_t *pRS_BufferPtr)
{
// check that hRS is defined
if (hRS == NULL)
return RS_ERR;
// check that huart is defined
if (huart == NULL)
return RS_ERR;
// init uart
// RS_UART_Init();
hRS->huart = huart;
// RS_TIM_Init();
hRS->htim = htim;
if (hRS->sRS_RX_Size_Mode == NULL)
return RS_ERR;
// check that buffer is defined
if (hRS->pBufferPtr == NULL)
{
hRS->pBufferPtr = RS_Buffer; // if no - set default
}
else
hRS->pBufferPtr = pRS_BufferPtr; // if yes - set by user
return RS_OK;
}
/**
* @brief ReInitialize UART and RS receive.
* @param hRS - указатель на хендлер RS.
* @param suart - указатель на структуру с настройками UART.
* @return RS_RES - статус о состоянии RS после инициализации.
* @note Реинициализация UART и приема по RS.
*/
HAL_StatusTypeDef RS_ReInit_UART(RS_HandleTypeDef *hRS, UART_HandleTypeDef *huart)
{
HAL_StatusTypeDef RS_RES;
hRS->f.ReInit_UART = 0;
// // check is settings are valid
// if(Check_UART_Init_Struct(suart) != HAL_OK)
// return HAL_ERROR;
RS_Abort(hRS, ABORT_RS);
RS_UART_DeInit(huart);
RS_UART_Init();
RS_Receive_IT(hRS, hRS->pMessagePtr);
return RS_RES;
}
/**
* @brief Abort RS/UART.
* @param hRS - указатель на хендлер RS.
* @param AbortMode - выбор, что надо отменить.
- ABORT_TX: Отмена передачи по ЮАРТ, с очищением флагов TX,
- ABORT_RX: Отмена приема по ЮАРТ, с очищением флагов RX,
- ABORT_RX_TX: Отмена приема и передачи по ЮАРТ,
- ABORT_RS: Отмена приема-передачи RS, с очищением всей структуры.
* @return RS_RES - статус о состоянии RS после аборта.
* @note Отмена работы UART в целом или отмена приема/передачи RS.
Также очищается хендл hRS.
*/
RS_StatusTypeDef RS_Abort(RS_HandleTypeDef *hRS, RS_AbortTypeDef AbortMode)
{
HAL_StatusTypeDef uart_res = 0;
hRS->htim->Instance->CNT = 0;
__HAL_TIM_CLEAR_IT(hRS->htim, TIM_IT_UPDATE);
if(hRS->sRS_Timeout) // if timeout setted
HAL_TIM_Base_Stop_IT(hRS->htim); // stop timeout
if((AbortMode&ABORT_RS) == 0x00)
{
if((AbortMode&ABORT_RX) == ABORT_RX)
{
uart_res = HAL_UART_AbortReceive(hRS->huart); // abort receive
RS_Reset_RX_Flags(hRS);
}
if((AbortMode&ABORT_TX) == ABORT_TX)
{
uart_res = HAL_UART_AbortTransmit(hRS->huart); // abort transmit
RS_Reset_TX_Flags(hRS);
}
}
else
{
uart_res = HAL_UART_Abort(hRS->huart);
RS_Clear_All(hRS);
}
hRS->RS_STATUS = RS_ABORTED;
return RS_ABORTED;
}
//-------------------------GENERAL FUNCTIONS-------------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//--------------------CALLBACK/HANDLER FUNCTIONS---------------------
/**
* @brief Handle for starting receive.
* @param hRS - указатель на хендлер RS.
* @param RS_msg - указатель на структуру сообщения.
* @return RS_RES - статус о состоянии RS после инициализации приема или окончания общения.
* @note Определяет начинать прием команды/ответа или нет.
*/
RS_StatusTypeDef RS_Handle_Receive_Start(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg)
{
RS_StatusTypeDef RS_RES = 0;
switch(hRS->sRS_Mode)
{
case SLAVE_ALWAYS_WAIT: // in slave mode with permanent waiting
RS_RES = RS_Receive_IT(hRS, RS_msg); break; // start receiving again
case SLAVE_TIMEOUT_WAIT: // in slave mode with timeout waiting (start receiving cmd by request)
RS_Set_Free(hRS); RS_RES = RS_OK; break; // end RS communication (set RS unbusy)
}
if(RS_RES != RS_OK)
{
}
return RS_RES;
}
/**
* @brief Handle for starting transmit.
* @param hRS - указатель на хендлер RS.
* @param RS_msg - указатель на структуру сообщения.
* @return RS_RES - статус о состоянии RS после инициализации передачи.
* @note Определяет отвечать ли на команду или нет.
*/
RS_StatusTypeDef RS_Handle_Transmit_Start(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg)
{
RS_StatusTypeDef RS_RES = 0;
switch(hRS->sRS_Mode)
{
case SLAVE_ALWAYS_WAIT: // in slave mode always response
case SLAVE_TIMEOUT_WAIT: // transmit response
RS_RES = RS_Transmit_IT(hRS, RS_msg); break;
}
if(RS_RES != RS_OK)
{
}
return RS_RES;
}
/**
* @brief UART RX Callback: define behaviour after receiving parts of message.
* @param hRS - указатель на хендлер RS.
* @return RS_RES - статус о состоянии RS после обработки приема.
* @note Контролирует прием сообщения: определяет размер принимаемой посылки и обрабатывает его.
*/
RS_StatusTypeDef RS_UART_RxCpltCallback(RS_HandleTypeDef *hRS)
{
RS_StatusTypeDef RS_RES = 0;
HAL_StatusTypeDef uart_res = 0;
// if we had received bytes before ByteCnt
if((hRS->sRS_RX_Size_Mode == RS_RX_Size_NotConst) && (hRS->f.RX_Half == 0)) // if data size isnt constant and its first half, and
{ // First receive part of message, then define size of rest of message, and start receive it
hRS->f.RX_Half = 1;
//---------------FIND DATA SIZE-----------------
uint32_t NuRS_of_Rest_Bytes = 0xFFFF;
RS_RES = RS_Define_Size_of_RX_Message(hRS, &NuRS_of_Rest_Bytes);
// if we need to skip this message - restart receive
if(RS_RES == RS_SKIP || NuRS_of_Rest_Bytes == 0xFFFF)
{
RS_Abort(hRS, ABORT_RX);
RS_RES = RS_Handle_Receive_Start(hRS, hRS->pMessagePtr);
return RS_RES;
}
// if there is no bytes to receive
if(NuRS_of_Rest_Bytes == 0)
{
hRS->f.RX_Half = 0;
//---------PROCESS DATA & ENDING RECEIVING--------
RS_Set_RX_End(hRS);
if(hRS->sRS_Timeout) // if timeout setted
HAL_TIM_Base_Stop_IT(hRS->htim); // stop timeout
// parse received data
RS_RES = RS_Parse_Message(hRS, hRS->pMessagePtr, hRS->pBufferPtr); // parse message
// RESPONSE
RS_RES = RS_Response(hRS, hRS->pMessagePtr);
return RS_RES;
}
//-------------START UART RECEIVE---------------
uart_res = HAL_UART_Receive_IT(hRS->huart, (hRS->pBufferPtr + RX_FIRST_PART_SIZE), NuRS_of_Rest_Bytes);
if(uart_res != HAL_OK)
{// need uart status, so doesnt write abort to RS_RES
RS_RES = RS_Abort(hRS, ABORT_RS);
}
else
RS_RES = RS_OK;
}
else // if we had received whole message
{
hRS->f.RX_Half = 0;
//---------PROCESS DATA & ENDING RECEIVING--------
RS_Set_RX_End(hRS);
if(hRS->sRS_Timeout) // if timeout setted
HAL_TIM_Base_Stop_IT(hRS->htim); // stop timeout
// parse received data
RS_RES = RS_Parse_Message(hRS, hRS->pMessagePtr, hRS->pBufferPtr); // parse message
// RESPONSE
RS_RES = RS_Response(hRS, hRS->pMessagePtr);
}
return RS_RES;
}
/**
* @brief UART TX Callback: define behaviour after transmiting message.
* @param hRS - указатель на хендлер RS.
* @return RS_RES - статус о состоянии RS после обработки приема.
* @note Определяет поведение RS после передачи сообщения.
*/
RS_StatusTypeDef RS_UART_TxCpltCallback(RS_HandleTypeDef *hRS)
{
RS_StatusTypeDef RS_RES = RS_OK;
HAL_StatusTypeDef uart_res = 0;
//--------------ENDING TRANSMITTING-------------
RS_Set_TX_End(hRS);
RS_EnableReceive();
// for(int i = 0; i < hRS->sRS_Timeout; i++);
//-----------START RECEIVING or END RS----------
RS_RES = RS_Handle_Receive_Start(hRS, hRS->pMessagePtr);
return RS_RES;
}
/**
* @brief Handler for UART.
* @param hRS - указатель на хендлер RS.
* @note Обрабатывает ошибки если есть и вызывает RS Коллбеки.
* Добавить вызов этой функции в UARTx_IRQHandler() после HAL_UART_IRQHandler().
*/
void RS_UART_Handler(RS_HandleTypeDef *hRS)
{
//-------------CALL RS CALLBACKS------------
/* IF NO ERROR OCCURS */
if(hRS->huart->ErrorCode == 0)
{
hRS->htim->Instance->CNT = 0; // reset cnt;
/* Start timeout */
if(hRS->sRS_Timeout) // if timeout setted
if((hRS->huart->RxXferCount+1 == hRS->huart->RxXferSize) && RS_Is_RX_Busy(hRS)) // if first byte is received and receive is active
{
hRS->htim->Instance->ARR = hRS->sRS_Timeout; // reset cnt;
HAL_TIM_Base_Start_IT(hRS->htim);
RS_Set_RX_Active_Flags(hRS);
}
/* RX Callback */
if (( hRS->huart->RxXferCount == 0U) && RS_Is_RX_Busy(hRS) && // if all bytes are received and receive is active
hRS->huart->RxState != HAL_UART_STATE_BUSY_RX) // also check that receive "REALLY" isnt busy
RS_UART_RxCpltCallback(hRS);
/* TX Callback */
if (( hRS->huart->TxXferCount == 0U) && RS_Is_TX_Busy(hRS) && // if all bytes are transmited and transmit is active
hRS->huart->gState != HAL_UART_STATE_BUSY_TX) // also check that receive "REALLY" isnt busy
RS_UART_TxCpltCallback(hRS);
}
//----------------ERRORS HANDLER----------------
else
{
if(hRS->f.RX_Busy)
{
/* de-init uart transfer */
RS_Abort(hRS, ABORT_RS);
RS_Handle_Receive_Start(hRS, hRS->pMessagePtr);
// later, maybe, will be added specific handlers for err
}
}
}
/**
* @brief Handler for TIM.
* @param hRS - указатель на хендлер RS.
* @note Попадание сюда = таймаут и перезапуск RS приема
* Добавить вызов этой функции в TIMx_IRQHandler() после HAL_TIM_IRQHandler().
*/
void RS_TIM_Handler(RS_HandleTypeDef *hRS)
{
HAL_TIM_Base_Stop_IT(hRS->htim);
RS_Abort(hRS, ABORT_RS);
RS_Handle_Receive_Start(hRS, hRS->pMessagePtr);
}
//--------------------CALLBACK/HANDLER FUNCTIONS---------------------
//-------------------------------------------------------------------
//-------------------------------------------------------------------
//--------------WEAK PROTOTYPES FOR PROCESSING MESSAGE---------------
/**
* @brief Respond accord to received message.
* @param hRS - указатель на хендлер RS.
* @param RS_msg - указатель на структуру сообщения.
* @return RS_RES - статус о результате ответа на комманду.
* @note Обработка принятой комманды и ответ на неё.
*/
__weak RS_StatusTypeDef RS_Response(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg)
{
/* Redefine function for user purposes */
return RS_ERR;
}
/**
* @brief Collect message in buffer to transmit it.
* @param hRS - указатель на хендлер RS.
* @param RS_msg - указатель на структуру сообщения.
* @param msg_uart_buff - указатель на буффер UART.
* @return RS_RES - статус о результате заполнения буфера.
* @note Заполнение буффера UART из структуры сообщения.
*/
__weak RS_StatusTypeDef RS_Collect_Message(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg, uint8_t *msg_uart_buff)
{
/* Redefine function for user purposes */
return RS_ERR;
}
/**
* @brief Parse message from buffer to process it.
* @param hRS - указатель на хендлер RS.
* @param RS_msg - указатель на структуру сообщения.
* @param msg_uart_buff - указатель на буффер UART.
* @return RS_RES - статус о результате заполнения структуры.
* @note Заполнение структуры сообщения из буффера UART.
*/
__weak RS_StatusTypeDef RS_Parse_Message(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg, uint8_t *msg_uart_buff)
{
/* Redefine function for user purposes */
return RS_ERR;
}
/**
* @brief Define size of RX Message that need to be received.
* @param hRS - указатель на хендлер RS.
* @param rx_data_size - указатель на переменную для записи кол-ва байт для принятия.
* @return RS_RES - статус о корректности рассчета кол-ва байт для принятия.
* @note Определение сколько байтов надо принять по протоколу.
*/
__weak RS_StatusTypeDef RS_Define_Size_of_RX_Message(RS_HandleTypeDef *hRS, uint32_t *rx_data_size)
{
/* Redefine function for user purposes */
return RS_ERR;
}
//--------------WEAK PROTOTYPES FOR PROCESSING MESSAGE---------------
//-------------------------------------------------------------------

View File

@@ -1,257 +0,0 @@
/**
**************************************************************************
* @file rs_message.h
* @brief Заголовочный файл для модуля реализации протоколов по RS/UART.
**************************************************************************
* @defgroup RS_TOOLS
* @brief Всякое для работы по UART/RS
**************************************************************************
@details
**************************************************************************
Для настройки RS/UART под нужный протокол, необходимо:
- Определить структуру сообщения RS_MsgTypeDef и
дефайны RX_FIRST_PART_SIZE и MSG_SIZE_MAX.
- Подключить этот файл в раздел rs_message.h.
- Определить функции для обработки сообщения: RS_Parse_Message(),
RS_Collect_Message(), RS_Response(), RS_Define_Size_of_RX_Message()
- Добавить UART/TIM Handler в Хендлер используемых UART/TIM.
Так же данный модуль использует счетчики
**************************************************************************
@verbatim
Визуальное описание. Форматирование сохраняется как в коде.
@endverbatim
*************************************************************************/
#ifndef __RS_LIB_H_
#define __RS_LIB_H_
#include "modbus.h"
#include "crc_algs.h"
/////////////////////////////////////////////////////////////////////
////////////////////////////---DEFINES---////////////////////////////
/* Check that all defines required by RS are defined */
#ifndef MSG_SIZE_MAX
#error Define MSG_SIZE_MAX (Maximum size of message). This is necessary to create buffer for UART.
#endif
#ifndef RX_FIRST_PART_SIZE
#error Define RX_FIRST_PART_SIZE (Size of first part of message). This is necessary to receive the first part of the message, from which determine the size of the remaining part of the message.
#endif
/* Clear message-uart buffer */
#define RS_Clear_Buff(_buff_) for(int i=0; i<MSG_SIZE_MAX;i++) _buff_[i] = NULL
/* Set/Reset flags */
#define RS_Set_Free(_hRS_) _hRS_->f.RS_Busy = 0
#define RS_Set_Busy(_hRS_) _hRS_->f.RS_Busy = 1
#define RS_Set_RX_Flags(_hRS_) _hRS_->f.RX_Busy = 1; _hRS_->f.RX_Done = 0; _hRS_->f.RX_Half = 0
#define RS_Set_RX_Active_Flags(_hRS_) _hRS_->f.RX_Ongoing = 1
#define RS_Set_TX_Flags(_hRS_) _hRS_->f.TX_Busy = 1; _hRS_->f.TX_Done = 0
#define RS_Reset_RX_Active_Flags(_hRS_) _hRS_->f.RX_Ongoing = 0
#define RS_Reset_RX_Flags(_hRS_) RS_Reset_RX_Active_Flags(_hRS_); _hRS_->f.RX_Busy = 0; _hRS_->f.RX_Done = 0; _hRS_->f.RX_Half = 0
#define RS_Reset_TX_Flags(_hRS_) _hRS_->f.TX_Busy = 0; _hRS_->f.TX_Done = 0
#define RS_Set_RX_End_Flag(_hRS_) _hRS_->f.RX_Done = 1;
#define RS_Set_TX_End_Flag(_hRS_) _hRS_->f.TX_Done = 1
#define RS_Set_RX_End(_hRS_) RS_Reset_RX_Flags(_hRS_); RS_Set_RX_End_Flag(_hRS_)
#define RS_Set_TX_End(_hRS_) RS_Reset_TX_Flags(_hRS_); RS_Set_TX_End_Flag(_hRS_)
/* Clear all RS stuff */
#define RS_Clear_All(_hRS_) RS_Clear_Buff(_hRS_->pBufferPtr); RS_Reset_RX_Flags(_hRS_); RS_Reset_TX_Flags(_hRS_);
//#define MB_Is_RX_Busy(_hRS_) ((_hRS_->huart->gState&HAL_USART_STATE_BUSY_RX) == HAL_USART_STATE_BUSY_RX)
//#define MB_Is_TX_Busy(_hRS_) ((_hRS_->huart->gState&HAL_USART_STATE_BUSY_RX) == HAL_USART_STATE_BUSY_TX)
#define RS_Is_RX_Busy(_hRS_) (_hRS_->f.RX_Busy == 1)
#define RS_Is_TX_Busy(_hRS_) (_hRS_->f.TX_Busy == 1)
#ifndef RS_EnableReceive
#define RS_EnableReceive()
#endif
#ifndef RS_EnableTransmit
#define RS_EnableTransmit()
#endif
////////////////////////////---DEFINES---////////////////////////////
/////////////////////////////////////////////////////////////////////
///////////////////////---STRUCTURES & ENUMS---//////////////////////
//------------------ENUMERATIONS--------------------
/** @brief Enums for respond CMD about RS status */
typedef enum // RS_StatusTypeDef
{
/* IN-CODE STATUS (start from 0x01, and goes up)*/
/*0x01*/ RS_OK = 0x01,
/*0x02*/ RS_ERR,
/*0x03*/ RS_ABORTED,
/*0x04*/ RS_BUSY,
/*0x05*/ RS_SKIP,
/*0x06*/ RS_COLLECT_MSG_ERR,
/*0x07*/ RS_PARSE_MSG_ERR,
// reserved values
// /*0x00*/ RS_UNKNOWN_ERR = 0x00, ///< reserved for case, if no one error founded (nothing changed response from zero)
}RS_StatusTypeDef;
/** @brief Enums for RS Modes */
typedef enum // RS_ModeTypeDef
{
SLAVE_ALWAYS_WAIT = 0x01, ///< Slave mode with infinity waiting
SLAVE_TIMEOUT_WAIT = 0x02, ///< Slave mode with waiting with timeout
// MASTER = 0x03, ///< Master mode
}RS_ModeTypeDef;
/** @brief Enums for RS UART Modes */
typedef enum // RS_ITModeTypeDef
{
BLCK_MODE = 0x00, ///< Blocking mode
IT_MODE = 0x01, ///< Interrupt mode
}RS_ITModeTypeDef;
/** @brief Enums for Abort modes */
typedef enum // RS_AbortTypeDef
{
ABORT_TX = 0x01, ///< Abort transmit
ABORT_RX = 0x02, ///< Abort receive
ABORT_RX_TX = 0x03, ///< Abort receive and transmit
ABORT_RS = 0x04, ///< Abort uart and reset RS structure
}RS_AbortTypeDef;
/** @brief Enums for RX Size modes */
typedef enum // RS_RXSizeTypeDef
{
RS_RX_Size_Const = 0x01, ///< size of receiving message is constant
RS_RX_Size_NotConst = 0x02, ///< size of receiving message isnt constant
}RS_RXSizeTypeDef;
//-----------STRUCTURE FOR HANDLE RS------------
/** @brief Struct for flags RS */
typedef struct
{
unsigned RX_Half:1; ///< flag: 0 - receiving msg before ByteCnt, 0 - receiving msg after ByteCnt
unsigned RS_Busy:1; ///< flag: 1 - RS is busy, 0 - RS isnt busy
unsigned RX_Ongoing:1; ///< flag: 1 - receiving data right now, 0 - waiting for receiving data
unsigned RX_Busy:1; ///< flag: 1 - receiving is active, 0 - receiving isnt active
unsigned TX_Busy:1; ///< flag: 1 - transmiting is active, 0 - transmiting isnt active
unsigned RX_Done:1; ///< flag: 1 - receiving is done, 0 - receiving isnt done
unsigned TX_Done:1; ///< flag: 1 - transmiting is done, 0 - transmiting isnt done
// setted by user
unsigned MessageHandled:1; ///< flag: 1 - RS command is handled, 0 - RS command isnt handled yet
unsigned EchoResponse:1; ///< flag: 1 - response with received msg, 0 - response with own msg
unsigned DeferredResponse:1; ///< flag: 1 - response not in interrupt, 0 - response in interrupt
unsigned ReInit_UART:1; ///< flag: 1 - need to reinitialize uart, 0 - nothing
}RS_FlagsTypeDef;
/**
* @brief Handle for RS communication.
* @note Prefixes: h - handle, s - settings, f - flag
*/
typedef struct // RS_HandleTypeDef
{
/* MESSAGE */
uint8_t ID; ///< ID of RS "channel"
RS_MsgTypeDef *pMessagePtr; ///< pointer to message struct
uint8_t *pBufferPtr; ///< pointer to message buffer
uint32_t RS_Message_Size; ///< size of whole message, not only data
/* HANDLERS and SETTINGS */
UART_HandleTypeDef *huart; ///< handler for used uart
TIM_HandleTypeDef *htim; ///< handler for used tim
RS_ModeTypeDef sRS_Mode; ///< setting: slave or master @ref RS_ModeTypeDef
RS_ITModeTypeDef sRS_IT_Mode; ///< setting: 1 - IT mode, 0 - Blocking mode
uint16_t sRS_Timeout; ///< setting: timeout in ms
RS_RXSizeTypeDef sRS_RX_Size_Mode; ///< setting: 1 - not const, 0 - const
/* FLAGS */
RS_FlagsTypeDef f; ///< These flags for controling receive/transmit
/* RS STATUS */
RS_StatusTypeDef RS_STATUS; ///< RS status
}RS_HandleTypeDef;
extern RS_HandleTypeDef hmodbus1;
///////////////////////---STRUCTURES & ENUMS---//////////////////////
/////////////////////////////////////////////////////////////////////
///////////////////////////---FUNCTIONS---///////////////////////////
//----------------FUNCTIONS FOR PROCESSING MESSAGE-------------------
/*--------------------Defined by users purposes--------------------*/
/* Respond accord to received message */
RS_StatusTypeDef RS_Response(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg);
/* Collect message in buffer to transmit it */
RS_StatusTypeDef RS_Collect_Message(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg, uint8_t *msg_uart_buff);
/* Parse message from buffer to process it */
RS_StatusTypeDef RS_Parse_Message(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg, uint8_t *msg_uart_buff);
/* Define size of RX Message that need to be received */
RS_StatusTypeDef RS_Define_Size_of_RX_Message(RS_HandleTypeDef *hRS, uint32_t *rx_data_size);
//-------------------------GENERAL FUNCTIONS-------------------------
/*-----------------Should be called from main code-----------------*/
/* Start receive IT */
RS_StatusTypeDef RS_Receive_IT(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg);
/* Start transmit IT */
RS_StatusTypeDef RS_Transmit_IT(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg);
/* Initialize UART and handle RS stucture */
RS_StatusTypeDef RS_Init(RS_HandleTypeDef *hRS, UART_HandleTypeDef *huart, TIM_HandleTypeDef *htim, uint8_t *pRS_BufferPtr);
/* ReInitialize UART and RS receive */
HAL_StatusTypeDef RS_ReInit_UART(RS_HandleTypeDef *hRS, UART_HandleTypeDef *suart);
/* Abort RS/UART */
RS_StatusTypeDef RS_Abort(RS_HandleTypeDef *hRS, RS_AbortTypeDef AbortMode);
//-------------------------GENERAL FUNCTIONS-------------------------
//-------------------------------------------------------------------
//--------------------CALLBACK/HANDLER FUNCTIONS---------------------
/* Handle for starting receive */
RS_StatusTypeDef RS_Handle_Receive_Start(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg);
/* Handle for starting transmit */
RS_StatusTypeDef RS_Handle_Transmit_Start(RS_HandleTypeDef *hRS, RS_MsgTypeDef *RS_msg);
/* UART RX Callback: define behaviour after receiving parts of message */
RS_StatusTypeDef RS_UART_RxCpltCallback(RS_HandleTypeDef *hRS);
/* UART TX Callback: define behaviour after transmiting message */
RS_StatusTypeDef RS_UART_TxCpltCallback(RS_HandleTypeDef *hRS);
/* Handler for UART */
void RS_UART_Handler(RS_HandleTypeDef *hRS);
/* Handler for TIM */
void RS_TIM_Handler(RS_HandleTypeDef *hRS);
//--------------------CALLBACK/HANDLER FUNCTIONS---------------------
///////////////////////////---FUNCTIONS---///////////////////////////
#ifndef printf_rs_err
#define printf_rs_err(...)
#endif
#ifndef printf_rs
#define printf_rs(...)
#endif
#endif // __RS_LIB_H_

View File

@@ -33,55 +33,53 @@ Mcu.IPNb=11
Mcu.Name=STM32F103C(4-6)Tx
Mcu.Package=LQFP48
Mcu.Pin0=PC13-TAMPER-RTC
Mcu.Pin1=PC14-OSC32_IN
Mcu.Pin10=PA5
Mcu.Pin11=PA6
Mcu.Pin12=PA7
Mcu.Pin13=PB0
Mcu.Pin14=PB1
Mcu.Pin15=PB2
Mcu.Pin16=PB10
Mcu.Pin17=PB11
Mcu.Pin18=PB12
Mcu.Pin19=PB13
Mcu.Pin2=PC15-OSC32_OUT
Mcu.Pin20=PB14
Mcu.Pin21=PB15
Mcu.Pin22=PA8
Mcu.Pin23=PA9
Mcu.Pin24=PA10
Mcu.Pin25=PA11
Mcu.Pin26=PA12
Mcu.Pin27=PA13
Mcu.Pin28=PA14
Mcu.Pin29=PA15
Mcu.Pin3=PD0-OSC_IN
Mcu.Pin30=PB3
Mcu.Pin31=PB4
Mcu.Pin32=PB5
Mcu.Pin33=PB6
Mcu.Pin34=PB7
Mcu.Pin35=PB8
Mcu.Pin36=PB9
Mcu.Pin37=VP_ADC1_TempSens_Input
Mcu.Pin38=VP_ADC1_Vref_Input
Mcu.Pin39=VP_RTC_VS_RTC_Activate
Mcu.Pin4=PD1-OSC_OUT
Mcu.Pin40=VP_RTC_VS_RTC_Calendar
Mcu.Pin41=VP_SYS_VS_tim3
Mcu.Pin42=VP_TIM1_VS_ClockSourceINT
Mcu.Pin43=VP_TIM2_VS_ClockSourceINT
Mcu.Pin5=PA0-WKUP
Mcu.Pin6=PA1
Mcu.Pin7=PA2
Mcu.Pin8=PA3
Mcu.Pin9=PA4
Mcu.PinsNb=44
Mcu.Pin1=PD0-OSC_IN
Mcu.Pin10=PA7
Mcu.Pin11=PB0
Mcu.Pin12=PB1
Mcu.Pin13=PB2
Mcu.Pin14=PB10
Mcu.Pin15=PB11
Mcu.Pin16=PB12
Mcu.Pin17=PB13
Mcu.Pin18=PB14
Mcu.Pin19=PB15
Mcu.Pin2=PD1-OSC_OUT
Mcu.Pin20=PA8
Mcu.Pin21=PA9
Mcu.Pin22=PA10
Mcu.Pin23=PA11
Mcu.Pin24=PA12
Mcu.Pin25=PA13
Mcu.Pin26=PA14
Mcu.Pin27=PA15
Mcu.Pin28=PB3
Mcu.Pin29=PB4
Mcu.Pin3=PA0-WKUP
Mcu.Pin30=PB5
Mcu.Pin31=PB6
Mcu.Pin32=PB7
Mcu.Pin33=PB8
Mcu.Pin34=PB9
Mcu.Pin35=VP_ADC1_TempSens_Input
Mcu.Pin36=VP_ADC1_Vref_Input
Mcu.Pin37=VP_RTC_VS_RTC_Activate
Mcu.Pin38=VP_RTC_VS_RTC_Calendar
Mcu.Pin39=VP_SYS_VS_tim3
Mcu.Pin4=PA1
Mcu.Pin40=VP_TIM1_VS_ClockSourceINT
Mcu.Pin41=VP_TIM2_VS_ClockSourceINT
Mcu.Pin5=PA2
Mcu.Pin6=PA3
Mcu.Pin7=PA4
Mcu.Pin8=PA5
Mcu.Pin9=PA6
Mcu.PinsNb=42
Mcu.ThirdPartyNb=0
Mcu.UserConstants=
Mcu.UserName=STM32F103C6Tx
MxCube.Version=6.12.0
MxDb.Version=DB.6.0.120
MxCube.Version=6.15.0
MxDb.Version=DB.6.0.150
NVIC.BusFault_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false
NVIC.DebugMonitor_IRQn=true\:0\:0\:false\:false\:true\:false\:false\:false
NVIC.ForceEnableDMAVector=true
@@ -171,12 +169,8 @@ PB8.Mode=I2C
PB8.Signal=I2C1_SCL
PB9.Mode=I2C
PB9.Signal=I2C1_SDA
PC13-TAMPER-RTC.Mode=RTC OUT
PC13-TAMPER-RTC.Signal=RTC_OUT
PC14-OSC32_IN.Mode=LSE-External-Oscillator
PC14-OSC32_IN.Signal=RCC_OSC32_IN
PC15-OSC32_OUT.Mode=LSE-External-Oscillator
PC15-OSC32_OUT.Signal=RCC_OSC32_OUT
PC13-TAMPER-RTC.Locked=true
PC13-TAMPER-RTC.Signal=GPIO_Output
PD0-OSC_IN.Mode=HSE-External-Oscillator
PD0-OSC_IN.Signal=RCC_OSC_IN
PD1-OSC_OUT.Mode=HSE-External-Oscillator
@@ -184,6 +178,7 @@ PD1-OSC_OUT.Signal=RCC_OSC_OUT
PinOutPanel.RotationAngle=0
ProjectManager.AskForMigrate=true
ProjectManager.BackupPrevious=false
ProjectManager.CompilerLinker=GCC
ProjectManager.CompilerOptimize=6
ProjectManager.ComputerToolchain=false
ProjectManager.CoupleFile=true

431
john103C6T6/logs/backup.lvm Normal file
View File

@@ -0,0 +1,431 @@
LabVIEW Measurement
Writer_Version 2
Reader_Version 2
Separator Tab
Decimal_Separator ,
Multi_Headings Yes
X_Columns One
Time_Pref Absolute
Operator z
Date 2025/11/13
Time 15:16:08,040531158447265625
***End_of_Header***
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:08,040531158447265625
X_Dimension Time
X0 0,0000000000000000E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
0,000000 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:08,151824951171875
X_Dimension Time
X0 1,1129379272460937E-1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
0,111294 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:09,1365952491760253906
X_Dimension Time
X0 1,0960640907287598E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
1,096064 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:10,1405615806579589844
X_Dimension Time
X0 2,1000304222106934E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
2,100030 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:11,1472897529602050781
X_Dimension Time
X0 3,1067585945129395E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
3,106759 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:12,765697479248046875
X_Dimension Time
X0 4,7251663208007812E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
4,725166 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:13,140415191650390625
X_Dimension Time
X0 5,0998840332031250E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
5,099884 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:14,1417174339294433594
X_Dimension Time
X0 6,1011862754821777E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
6,101186 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:15,1356105804443359375
X_Dimension Time
X0 7,0950794219970703E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
7,095079 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:16,1398367881774902344
X_Dimension Time
X0 8,0993056297302246E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
8,099306 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:17,1468534469604492187
X_Dimension Time
X0 9,1063222885131836E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
9,106322 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:18,1485104560852050781
X_Dimension Time
X0 1,0107979297637939E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
10,107979 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:19,1396398544311523437
X_Dimension Time
X0 1,1099108695983887E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
11,099109 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:20,14166259765625
X_Dimension Time
X0 1,2101131439208984E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
12,101131 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:21,1363024711608886719
X_Dimension Time
X0 1,3095771312713623E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
13,095771 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:22,1432185173034667969
X_Dimension Time
X0 1,4102687358856201E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
14,102687 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:23,1432042121887207031
X_Dimension Time
X0 1,5102673053741455E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
15,102673 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:24,1468262672424316406
X_Dimension Time
X0 1,6106295108795166E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
16,106295 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:25,1429185867309570312
X_Dimension Time
X0 1,7102387428283691E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
17,102387 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:26,1594376564025878906
X_Dimension Time
X0 1,8118906497955322E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
18,118906 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:27,1411752700805664062
X_Dimension Time
X0 1,9100644111633301E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
19,100644 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:28,1400208473205566406
X_Dimension Time
X0 2,0099489688873291E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
20,099490 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:29,1346111297607421875
X_Dimension Time
X0 2,1094079971313477E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
21,094080 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:30,1374959945678710937
X_Dimension Time
X0 2,2096964836120605E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
22,096965 28,500000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:31,1462650299072265625
X_Dimension Time
X0 2,3105733871459961E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
23,105734 29,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:32,1459894180297851562
X_Dimension Time
X0 2,4105458259582520E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
24,105458 29,500000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:33,1347680091857910156
X_Dimension Time
X0 2,5094236850738525E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
25,094237 30,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:34,1428799629211425781
X_Dimension Time
X0 2,6102348804473877E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
26,102349 30,500000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:35,142475128173828125
X_Dimension Time
X0 2,7101943969726562E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
27,101944 31,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:36,1425271034240722656
X_Dimension Time
X0 2,8101995944976807E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
28,101996 30,500000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:37,1589808464050292969
X_Dimension Time
X0 2,9118449687957764E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
29,118450 30,500000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:38,1375432014465332031
X_Dimension Time
X0 3,0097012042999268E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
30,097012 30,500000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:39,5883951187133789063
X_Dimension Time
X0 3,1547863960266113E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
31,547864 30,500000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:40,1435170173645019531
X_Dimension Time
X0 3,2102985858917236E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
32,102986 30,500000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:41,1350607872009277344
X_Dimension Time
X0 3,3094529628753662E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
33,094530 30,500000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:42,1323223114013671875
X_Dimension Time
X0 3,4091791152954102E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
34,091791 30,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:43,1501688957214355469
X_Dimension Time
X0 3,5109637737274170E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
35,109638 30,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:16:44,1386942863464355469
X_Dimension Time
X0 3,6098163127899170E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
36,098163 30,000000 temp1

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

233
john103C6T6/logs/log.lvm Normal file
View File

@@ -0,0 +1,233 @@
LabVIEW Measurement
Writer_Version 2
Reader_Version 2
Separator Tab
Decimal_Separator ,
Multi_Headings Yes
X_Columns One
Time_Pref Absolute
Operator z
Date 2025/11/13
Time 15:18:42,2196631431579589844
***End_of_Header***
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:42,2196631431579589844
X_Dimension Time
X0 0,0000000000000000E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
0,000000 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:43,1454310417175292969
X_Dimension Time
X0 9,2576789855957031E-1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
0,925768 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:44,1414446830749511719
X_Dimension Time
X0 1,9217815399169922E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
1,921782 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:45,1437168121337890625
X_Dimension Time
X0 2,9240536689758301E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
2,924054 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:46,1456303596496582031
X_Dimension Time
X0 3,9259672164916992E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
3,925967 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:47,1414666175842285156
X_Dimension Time
X0 4,9218034744262695E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
4,921803 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:48,14643096923828125
X_Dimension Time
X0 5,9267678260803223E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
5,926768 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:49,1424298286437988281
X_Dimension Time
X0 6,9227666854858398E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
6,922767 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:50,1434178352355957031
X_Dimension Time
X0 7,9237546920776367E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
7,923755 28,500000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:51,1381001472473144531
X_Dimension Time
X0 8,9184370040893555E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
8,918437 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:52,1338038444519042969
X_Dimension Time
X0 9,9141407012939453E+0
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
9,914141 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:53,1467270851135253906
X_Dimension Time
X0 1,0927063941955566E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
10,927064 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:54,1358785629272460937
X_Dimension Time
X0 1,1916215419769287E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
11,916215 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:55,14373016357421875
X_Dimension Time
X0 1,2924067020416260E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
12,924067 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:56,1407599449157714844
X_Dimension Time
X0 1,3921096801757812E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
13,921097 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:58,7443718910217285156
X_Dimension Time
X0 1,6524708747863770E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
16,524709 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:58,8754205703735351562
X_Dimension Time
X0 1,6655757427215576E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
16,655757 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:18:59,1390137672424316406
X_Dimension Time
X0 1,6919350624084473E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
16,919351 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:19:00,13970947265625
X_Dimension Time
X0 1,7920046329498291E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
17,920046 28,000000 temp1
Channels 1
Samples 1
Date 2025/11/13
Time 15:19:01,1449561119079589844
X_Dimension Time
X0 1,8925292968750000E+1
Delta_X 1,000000
***End_of_Header***
X_Value Untitled Comment
18,925293 28,000000 temp1

BIN
john103C6T6/logs/log.tdms Normal file

Binary file not shown.

Binary file not shown.

BIN
john103C6T6/logs/log_1.tdms Normal file

Binary file not shown.

Binary file not shown.

BIN
john103C6T6/logs/log_2.tdms Normal file

Binary file not shown.

Binary file not shown.

BIN
john103C6T6/logs/log_3.tdms Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Submodule labview_john/labview_proj deleted from fcba827e91