UKSS_ICE/v120/DSP2833x_examples/watchdog/Example_2833xWatchdog.c
nelolik b8a0477c5c init commit.
Проект каким он достался от Димы.
2021-02-15 09:56:27 +03:00

177 lines
6.2 KiB
C

// TI File $Revision: /main/9 $
// Checkin $Date: April 21, 2008 15:43:50 $
//###########################################################################
//
// FILE: Example_2833xWatchdog.c
//
// TITLE: DSP2833x Watchdog interrupt test program.
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This program exercises the watchdog.
//
// First the watchdog is connected to the WAKEINT interrupt of the
// PIE block. The code is then put into an infinite loop.
//
// The user can select to feed the watchdog key register or not
// by commenting one line of code in the infinite loop.
//
// If the watchdog key register is fed by the ServiceDog function
// then the WAKEINT interrupt is not taken. If the key register
// is not fed by the ServiceDog function then WAKEINT will be taken.
//
// Watch Variables:
// LoopCount for the number of times through the infinite loop
// WakeCount for the number of times through WAKEINT
//
//###########################################################################
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // Headerfile Include File
#include "DSP2833x_Examples.h" // Examples Include File
// Prototype statements for functions found within this file.
interrupt void wakeint_isr(void);
// Global variables for this example
Uint32 WakeCount;
Uint32 LoopCount;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.WAKEINT = &wakeint_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// Step 5. User specific code, enable interrupts:
// Clear the counters
WakeCount = 0; // Count interrupts
LoopCount = 0; // Count times through idle loop
// Connect the watchdog to the WAKEINT interrupt of the PIE
// Write to the whole SCSR register to avoid clearing WDOVERRIDE bit
EALLOW;
SysCtrlRegs.SCSR = BIT1;
EDIS;
// Enable WAKEINT in the PIE: Group 1 interrupt 8
// Enable INT1 which is connected to WAKEINT:
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block
PieCtrlRegs.PIEIER1.bit.INTx8 = 1; // Enable PIE Gropu 1 INT8
IER |= M_INT1; // Enable CPU int1
EINT; // Enable Global Interrupts
// Reset the watchdog counter
ServiceDog();
// Enable the watchdog
EALLOW;
SysCtrlRegs.WDCR = 0x0028;
EDIS;
// Step 6. IDLE loop. Just sit and loop forever (optional):
for(;;)
{
LoopCount++;
// Uncomment ServiceDog to just loop here
// Comment ServiceDog to take the WAKEINT instead
// ServiceDog();
}
}
// Step 7. Insert all local Interrupt Service Routines (ISRs) and functions here:
// If local ISRs are used, reassign vector addresses in vector table as
// shown in Step 5
interrupt void wakeint_isr(void)
{
WakeCount++;
// Acknowledge this interrupt to get more from group 1
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
}
//===========================================================================
// No more.
//===========================================================================