// TI File $Revision: /main/9 $ // Checkin $Date: April 21, 2008 15:43:50 $ //########################################################################### // // FILE: Example_2833xWatchdog.c // // TITLE: DSP2833x Watchdog interrupt test program. // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This program exercises the watchdog. // // First the watchdog is connected to the WAKEINT interrupt of the // PIE block. The code is then put into an infinite loop. // // The user can select to feed the watchdog key register or not // by commenting one line of code in the infinite loop. // // If the watchdog key register is fed by the ServiceDog function // then the WAKEINT interrupt is not taken. If the key register // is not fed by the ServiceDog function then WAKEINT will be taken. // // Watch Variables: // LoopCount for the number of times through the infinite loop // WakeCount for the number of times through WAKEINT // //########################################################################### // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP2833x_Device.h" // Headerfile Include File #include "DSP2833x_Examples.h" // Examples Include File // Prototype statements for functions found within this file. interrupt void wakeint_isr(void); // Global variables for this example Uint32 WakeCount; Uint32 LoopCount; void main(void) { // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. EALLOW; // This is needed to write to EALLOW protected registers PieVectTable.WAKEINT = &wakeint_isr; EDIS; // This is needed to disable write to EALLOW protected registers // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example // Step 5. User specific code, enable interrupts: // Clear the counters WakeCount = 0; // Count interrupts LoopCount = 0; // Count times through idle loop // Connect the watchdog to the WAKEINT interrupt of the PIE // Write to the whole SCSR register to avoid clearing WDOVERRIDE bit EALLOW; SysCtrlRegs.SCSR = BIT1; EDIS; // Enable WAKEINT in the PIE: Group 1 interrupt 8 // Enable INT1 which is connected to WAKEINT: PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block PieCtrlRegs.PIEIER1.bit.INTx8 = 1; // Enable PIE Gropu 1 INT8 IER |= M_INT1; // Enable CPU int1 EINT; // Enable Global Interrupts // Reset the watchdog counter ServiceDog(); // Enable the watchdog EALLOW; SysCtrlRegs.WDCR = 0x0028; EDIS; // Step 6. IDLE loop. Just sit and loop forever (optional): for(;;) { LoopCount++; // Uncomment ServiceDog to just loop here // Comment ServiceDog to take the WAKEINT instead // ServiceDog(); } } // Step 7. Insert all local Interrupt Service Routines (ISRs) and functions here: // If local ISRs are used, reassign vector addresses in vector table as // shown in Step 5 interrupt void wakeint_isr(void) { WakeCount++; // Acknowledge this interrupt to get more from group 1 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; } //=========================================================================== // No more. //===========================================================================