391 lines
12 KiB
C
391 lines
12 KiB
C
// TI File $Revision: /main/11 $
|
|
// Checkin $Date: April 21, 2008 15:43:14 $
|
|
//###########################################################################
|
|
//
|
|
// FILE: Example_2833xSci_Autobaud_.c
|
|
//
|
|
// TITLE: DSP2833x SCI Autobaud detect example
|
|
//
|
|
// ASSUMPTIONS:
|
|
//
|
|
// This program requires the DSP2833x header files.
|
|
//
|
|
// Test requires the following hardware connections:
|
|
//
|
|
// GPIO29/SCITXDA <-> GPIO19/SCIRXDB
|
|
// GPIO28/SCIRXDA <-> GPIO18/SCITXDB
|
|
//
|
|
//
|
|
// As supplied, this project is configured for "boot to SARAM"
|
|
// operation. The 2833x Boot Mode table is shown below.
|
|
// For information on configuring the boot mode of an eZdsp,
|
|
// please refer to the documentation included with the eZdsp,
|
|
//
|
|
// $Boot_Table:
|
|
//
|
|
// GPIO87 GPIO86 GPIO85 GPIO84
|
|
// XA15 XA14 XA13 XA12
|
|
// PU PU PU PU
|
|
// ==========================================
|
|
// 1 1 1 1 Jump to Flash
|
|
// 1 1 1 0 SCI-A boot
|
|
// 1 1 0 1 SPI-A boot
|
|
// 1 1 0 0 I2C-A boot
|
|
// 1 0 1 1 eCAN-A boot
|
|
// 1 0 1 0 McBSP-A boot
|
|
// 1 0 0 1 Jump to XINTF x16
|
|
// 1 0 0 0 Jump to XINTF x32
|
|
// 0 1 1 1 Jump to OTP
|
|
// 0 1 1 0 Parallel GPIO I/O boot
|
|
// 0 1 0 1 Parallel XINTF boot
|
|
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
|
|
// 0 0 1 1 Branch to check boot mode
|
|
// 0 0 1 0 Boot to flash, bypass ADC cal
|
|
// 0 0 0 1 Boot to SARAM, bypass ADC cal
|
|
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
|
|
// Boot_Table_End$
|
|
//
|
|
//
|
|
// This test will perform autobaud lock at a variety of baud rates, including
|
|
// very high baud rates.
|
|
//
|
|
// For this test to properly run, connect the SCI-A pins to the
|
|
// SCI-B pins without going through a transciever.
|
|
//
|
|
// At higher baud rates, the slew rate of the incoming data bits can be
|
|
// affected by transceiver and connector performance. This slew rate may
|
|
// limit reliable autobaud detection at higher baud rates.
|
|
//
|
|
// SCIA: Slave, autobaud locks, receives characters and
|
|
// echos them back to the host. Uses the RX interrupt
|
|
// to receive characters.
|
|
//
|
|
// SCIB: Host, known baud rate, sends characters to the slave
|
|
// and checks that they are echoed back.
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// Internal Loopback test for ever through SCIA using interrupts,
|
|
// FIFOs are disabled.
|
|
//
|
|
// Watch Variables: BRRVal - current BRR value used for SCIB
|
|
// ReceivedAChar - character received by SCIA
|
|
// ReceivedBChar - character received by SCIB
|
|
// SendChar - character being sent by SCIB
|
|
// SciaRegs.SCILBAUD - SCIA baud registers - set
|
|
// SciaRegs.SCIHBAUD by autobaud lock
|
|
//
|
|
//
|
|
//###########################################################################
|
|
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
|
|
// $Release Date: August 1, 2008 $
|
|
//###########################################################################
|
|
|
|
|
|
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
|
|
|
|
#define BAUDSTEP 100 // Amount BRR will be incremented between each
|
|
// autobaud lock
|
|
|
|
// Prototype statements for functions found within this file.
|
|
void scia_init(void);
|
|
void scib_init(void);
|
|
void scia_xmit(int a);
|
|
void scib_xmit(int a);
|
|
void scia_AutobaudLock(void);
|
|
void error();
|
|
interrupt void rxaint_isr(void);
|
|
|
|
|
|
// Global counts used in this example
|
|
Uint16 LoopCount;
|
|
//Uint16 xmitCount;
|
|
Uint16 ReceivedCount;
|
|
Uint16 ErrorCount;
|
|
Uint16 SendChar;
|
|
Uint16 ReceivedAChar; // scia received character
|
|
Uint16 ReceivedBChar; // scib received character
|
|
Uint16 BRRVal;
|
|
Uint16 Buff[10] = {0x55, 0xAA, 0xF0, 0x0F, 0x00, 0xFF, 0xF5, 0x5F, 0xA5, 0x5A};
|
|
|
|
void main(void)
|
|
{
|
|
Uint16 i;
|
|
|
|
// Step 1. Initialize System Control:
|
|
// PLL, WatchDog, enable Peripheral Clocks
|
|
// This example function is found in the DSP2833x_SysCtrl.c file.
|
|
InitSysCtrl();
|
|
|
|
// Step 2. Initalize GPIO:
|
|
// This example function is found in the DSP2833x_Gpio.c file and
|
|
// illustrates how to set the GPIO to it's default state.
|
|
// InitGpio(); // Skipped for this example
|
|
|
|
InitSciGpio();
|
|
|
|
// Initialize PIE control registers to their default state.
|
|
// The default state is all PIE interrupts disabled and flags
|
|
// are cleared.
|
|
// This function is found in the DSP2833x_PieCtrl.c file.
|
|
InitPieCtrl();
|
|
|
|
// Disable CPU interrupts and clear all CPU interrupt flags:
|
|
IER = 0x0000;
|
|
IFR = 0x0000;
|
|
|
|
// Initialize the PIE vector table with pointers to the shell Interrupt
|
|
// Service Routines (ISR).
|
|
// This will populate the entire table, even if the interrupt
|
|
// is not used in this example. This is useful for debug purposes.
|
|
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
|
|
// This function is found in DSP2833x_PieVect.c.
|
|
InitPieVectTable();
|
|
|
|
// Interrupts that are used in this example are re-mapped to
|
|
// ISR functions found within this file.
|
|
EALLOW; // This is needed to write to EALLOW protected registers
|
|
PieVectTable.SCIRXINTA = &rxaint_isr;
|
|
EDIS; // This is needed to disable write to EALLOW protected register
|
|
|
|
// Step 4. Initialize all the Device Peripherals:
|
|
// This function is found in DSP2833x_InitPeripherals.c
|
|
// InitPeripherals(); // Not required for this example
|
|
scia_init(); // Initalize SCIA
|
|
scib_init(); // Initalize SCIB
|
|
|
|
// Step 5. User specific code, enable interrupts:
|
|
|
|
LoopCount = 0;
|
|
ErrorCount = 0;
|
|
|
|
// Enable interrupts
|
|
PieCtrlRegs.PIEIER9.all = 0x0001; // Enable all SCIA RXINT interrupt
|
|
IER |= 0x0100; // enable PIEIER9, and INT9
|
|
EINT;
|
|
|
|
// Start with BRR = 1, work through each baud rate setting
|
|
// incrementing BRR by BAUDSTEP
|
|
for (BRRVal = 0x0000; BRRVal < (Uint32)0xFFFF; BRRVal+=BAUDSTEP)
|
|
{
|
|
|
|
// SCIB has a known baud rate. SCIA will autobaud to match
|
|
ScibRegs.SCIHBAUD = (BRRVal >> 8);
|
|
ScibRegs.SCILBAUD = (BRRVal);
|
|
|
|
// Initiate an autobaud lock with scia. Check
|
|
// returned character against baud lock character 'A'
|
|
scia_AutobaudLock();
|
|
while(ScibRegs.SCIRXST.bit.RXRDY != 1) { }
|
|
ReceivedBChar = 0;
|
|
ReceivedBChar = ScibRegs.SCIRXBUF.bit.RXDT;
|
|
if(ReceivedBChar != 'A')
|
|
{
|
|
error(0);
|
|
}
|
|
|
|
// Send/echoback characters
|
|
// 55 AA F0 0F 00 FF F5 5F A5 5A
|
|
for(i= 0; i<=9; i++)
|
|
{
|
|
SendChar = Buff[i];
|
|
scib_xmit(SendChar); // Initiate interrupts and xmit data in isr
|
|
// Wait to get the character back and check
|
|
// against the sent character.
|
|
while(ScibRegs.SCIRXST.bit.RXRDY != 1)
|
|
{
|
|
asm(" NOP");
|
|
}
|
|
ReceivedBChar = 0;
|
|
ReceivedBChar = ScibRegs.SCIRXBUF.bit.RXDT;
|
|
if(ReceivedBChar != SendChar) error(1);
|
|
}
|
|
|
|
} // Repeat for next BRR setting
|
|
|
|
// Stop here, no more
|
|
for(;;)
|
|
{
|
|
asm(" NOP");
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------- */
|
|
/* ISR for PIE INT9.1 */
|
|
/* Connected to RXAINT SCI-A */
|
|
/* ----------------------------------------------------*/
|
|
|
|
interrupt void rxaint_isr(void) // SCI-A
|
|
{
|
|
// Insert ISR Code here
|
|
|
|
PieCtrlRegs.PIEACK.all = PIEACK_GROUP9;
|
|
|
|
// If autobaud detected, we must clear CDC
|
|
if(SciaRegs.SCIFFCT.bit.ABD == 1)
|
|
{
|
|
SciaRegs.SCIFFCT.bit.ABDCLR = 1;
|
|
SciaRegs.SCIFFCT.bit.CDC = 0;
|
|
// Check received character - should be 'A'
|
|
ReceivedAChar = 0;
|
|
ReceivedAChar = SciaRegs.SCIRXBUF.all;
|
|
if(ReceivedAChar != 'A')
|
|
{
|
|
error(2);
|
|
}
|
|
else scia_xmit(ReceivedAChar);
|
|
}
|
|
|
|
// This was not autobaud detect
|
|
else
|
|
{
|
|
// Check received character against sendchar
|
|
ReceivedAChar = 0;
|
|
ReceivedAChar = SciaRegs.SCIRXBUF.all;
|
|
if(ReceivedAChar != SendChar)
|
|
{
|
|
error(3);
|
|
}
|
|
else scia_xmit(ReceivedAChar);
|
|
}
|
|
|
|
SciaRegs.SCIFFRX.bit.RXFFINTCLR = 1; // clear Receive interrupt flag
|
|
ReceivedCount++;
|
|
}
|
|
|
|
|
|
void error()
|
|
{
|
|
ErrorCount++;
|
|
asm(" ESTOP0"); // Uncomment to stop the test here
|
|
for (;;);
|
|
|
|
}
|
|
|
|
// SCIA 8-bit word, baud rate 0x000F, default, 1 STOP bit, no parity
|
|
void scia_init()
|
|
{
|
|
// Note: Clocks were turned on to the SCIA peripheral
|
|
// in the InitSysCtrl() function
|
|
|
|
// Reset FIFO's
|
|
SciaRegs.SCIFFTX.all=0x8000;
|
|
|
|
SciaRegs.SCICCR.all =0x0007; // 1 stop bit, No loopback
|
|
// No parity,8 char bits,
|
|
// async mode, idle-line protocol
|
|
SciaRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,
|
|
// Disable RX ERR, SLEEP, TXWAKE
|
|
SciaRegs.SCICTL2.all =0x0003;
|
|
SciaRegs.SCICTL2.bit.RXBKINTENA =1;
|
|
SciaRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
|
|
|
|
|
|
}
|
|
|
|
// SCIB 8-bit word, baud rate 0x000F, default, 1 STOP bit, no parity
|
|
|
|
void scib_init()
|
|
{
|
|
// Reset FIFO's
|
|
ScibRegs.SCIFFTX.all=0x8000;
|
|
|
|
// 1 stop bit, No parity, 8-bit character
|
|
// No loopback
|
|
ScibRegs.SCICCR.all = 0x0007;
|
|
|
|
// Enable TX, RX, Use internal SCICLK
|
|
ScibRegs.SCICTL1.all = 0x0003;
|
|
|
|
// Disable RxErr, Sleep, TX Wake,
|
|
// Diable Rx Interrupt, Tx Interrupt
|
|
ScibRegs.SCICTL2.all = 0x0000;
|
|
|
|
// Relinquish SCI-A from reset
|
|
ScibRegs.SCICTL1.all = 0x0023;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
|
|
// Transmit a character from the SCI-A'
|
|
void scia_xmit(int a)
|
|
{
|
|
SciaRegs.SCITXBUF=a;
|
|
}
|
|
|
|
// Transmit a character from the SCI-B'
|
|
void scib_xmit(int a)
|
|
{
|
|
ScibRegs.SCITXBUF=a;
|
|
}
|
|
|
|
|
|
//------------------------------------------------
|
|
// Perform autobaud lock with the host.
|
|
// Note that if autobaud never occurs
|
|
// the program will hang in this routine as there
|
|
// is no timeout mechanism included.
|
|
//------------------------------------------------
|
|
|
|
void scia_AutobaudLock()
|
|
{
|
|
|
|
SciaRegs.SCICTL1.bit.SWRESET = 0;
|
|
SciaRegs.SCICTL1.bit.SWRESET = 1;
|
|
|
|
// Must prime baud register with >= 1
|
|
SciaRegs.SCIHBAUD = 0;
|
|
SciaRegs.SCILBAUD = 1;
|
|
|
|
// Prepare for autobaud detection
|
|
// Make sure the ABD bit is clear by writing a 1 to ABDCLR
|
|
// Set the CDC bit to enable autobaud detection
|
|
SciaRegs.SCIFFCT.bit.ABDCLR = 1;
|
|
SciaRegs.SCIFFCT.bit.CDC = 1;
|
|
|
|
// Wait until we correctly read an
|
|
// 'A' or 'a' and lock
|
|
//
|
|
// As long as Autobaud calibration is enabled (CDC = 1),
|
|
// SCI-B (host) will continue transmitting 'A'. This will
|
|
// continue until interrupted by the SCI-A RX ISR, where
|
|
// SCI-A RXBUF receives 'A', autobaud-locks (ABDCLR=1
|
|
// CDC=0),and returns an 'A' back to the host. Then control
|
|
// is returned to this loop and the loop is exited.
|
|
//
|
|
// NOTE: ABD will become set sometime between
|
|
// scib_xmit and the DELAY_US loop, and
|
|
// the SCI-A RX ISR will be triggered.
|
|
// Upon returning and reaching the if-statement,
|
|
// ABD will have been cleared again by the ISR.
|
|
|
|
while(SciaRegs.SCIFFCT.bit.CDC== 1)
|
|
{
|
|
// Note the lower the baud rate the longer
|
|
// this delay has to be to allow the other end
|
|
// to echo back a character (about 4 characters long)
|
|
// Make this really long since we are going through all
|
|
// the baud rates.
|
|
DELAY_US(280000L);
|
|
|
|
if(SciaRegs.SCIFFCT.bit.CDC == 1)
|
|
scib_xmit('A'); // host transmits 'A'
|
|
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
//===========================================================================
|
|
// No more.
|
|
//===========================================================================
|
|
|