UKSS_ICE/v120/DSP2833x_examples/sci_autobaud/Example_2833xSci_Autobaud.c

391 lines
12 KiB
C
Raw Normal View History

// TI File $Revision: /main/11 $
// Checkin $Date: April 21, 2008 15:43:14 $
//###########################################################################
//
// FILE: Example_2833xSci_Autobaud_.c
//
// TITLE: DSP2833x SCI Autobaud detect example
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Test requires the following hardware connections:
//
// GPIO29/SCITXDA <-> GPIO19/SCIRXDB
// GPIO28/SCIRXDA <-> GPIO18/SCITXDB
//
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// This test will perform autobaud lock at a variety of baud rates, including
// very high baud rates.
//
// For this test to properly run, connect the SCI-A pins to the
// SCI-B pins without going through a transciever.
//
// At higher baud rates, the slew rate of the incoming data bits can be
// affected by transceiver and connector performance. This slew rate may
// limit reliable autobaud detection at higher baud rates.
//
// SCIA: Slave, autobaud locks, receives characters and
// echos them back to the host. Uses the RX interrupt
// to receive characters.
//
// SCIB: Host, known baud rate, sends characters to the slave
// and checks that they are echoed back.
//
// DESCRIPTION:
//
// Internal Loopback test for ever through SCIA using interrupts,
// FIFOs are disabled.
//
// Watch Variables: BRRVal - current BRR value used for SCIB
// ReceivedAChar - character received by SCIA
// ReceivedBChar - character received by SCIB
// SendChar - character being sent by SCIB
// SciaRegs.SCILBAUD - SCIA baud registers - set
// SciaRegs.SCIHBAUD by autobaud lock
//
//
//###########################################################################
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#define BAUDSTEP 100 // Amount BRR will be incremented between each
// autobaud lock
// Prototype statements for functions found within this file.
void scia_init(void);
void scib_init(void);
void scia_xmit(int a);
void scib_xmit(int a);
void scia_AutobaudLock(void);
void error();
interrupt void rxaint_isr(void);
// Global counts used in this example
Uint16 LoopCount;
//Uint16 xmitCount;
Uint16 ReceivedCount;
Uint16 ErrorCount;
Uint16 SendChar;
Uint16 ReceivedAChar; // scia received character
Uint16 ReceivedBChar; // scib received character
Uint16 BRRVal;
Uint16 Buff[10] = {0x55, 0xAA, 0xF0, 0x0F, 0x00, 0xFF, 0xF5, 0x5F, 0xA5, 0x5A};
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
InitSciGpio();
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.SCIRXINTA = &rxaint_isr;
EDIS; // This is needed to disable write to EALLOW protected register
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
scia_init(); // Initalize SCIA
scib_init(); // Initalize SCIB
// Step 5. User specific code, enable interrupts:
LoopCount = 0;
ErrorCount = 0;
// Enable interrupts
PieCtrlRegs.PIEIER9.all = 0x0001; // Enable all SCIA RXINT interrupt
IER |= 0x0100; // enable PIEIER9, and INT9
EINT;
// Start with BRR = 1, work through each baud rate setting
// incrementing BRR by BAUDSTEP
for (BRRVal = 0x0000; BRRVal < (Uint32)0xFFFF; BRRVal+=BAUDSTEP)
{
// SCIB has a known baud rate. SCIA will autobaud to match
ScibRegs.SCIHBAUD = (BRRVal >> 8);
ScibRegs.SCILBAUD = (BRRVal);
// Initiate an autobaud lock with scia. Check
// returned character against baud lock character 'A'
scia_AutobaudLock();
while(ScibRegs.SCIRXST.bit.RXRDY != 1) { }
ReceivedBChar = 0;
ReceivedBChar = ScibRegs.SCIRXBUF.bit.RXDT;
if(ReceivedBChar != 'A')
{
error(0);
}
// Send/echoback characters
// 55 AA F0 0F 00 FF F5 5F A5 5A
for(i= 0; i<=9; i++)
{
SendChar = Buff[i];
scib_xmit(SendChar); // Initiate interrupts and xmit data in isr
// Wait to get the character back and check
// against the sent character.
while(ScibRegs.SCIRXST.bit.RXRDY != 1)
{
asm(" NOP");
}
ReceivedBChar = 0;
ReceivedBChar = ScibRegs.SCIRXBUF.bit.RXDT;
if(ReceivedBChar != SendChar) error(1);
}
} // Repeat for next BRR setting
// Stop here, no more
for(;;)
{
asm(" NOP");
}
}
/* --------------------------------------------------- */
/* ISR for PIE INT9.1 */
/* Connected to RXAINT SCI-A */
/* ----------------------------------------------------*/
interrupt void rxaint_isr(void) // SCI-A
{
// Insert ISR Code here
PieCtrlRegs.PIEACK.all = PIEACK_GROUP9;
// If autobaud detected, we must clear CDC
if(SciaRegs.SCIFFCT.bit.ABD == 1)
{
SciaRegs.SCIFFCT.bit.ABDCLR = 1;
SciaRegs.SCIFFCT.bit.CDC = 0;
// Check received character - should be 'A'
ReceivedAChar = 0;
ReceivedAChar = SciaRegs.SCIRXBUF.all;
if(ReceivedAChar != 'A')
{
error(2);
}
else scia_xmit(ReceivedAChar);
}
// This was not autobaud detect
else
{
// Check received character against sendchar
ReceivedAChar = 0;
ReceivedAChar = SciaRegs.SCIRXBUF.all;
if(ReceivedAChar != SendChar)
{
error(3);
}
else scia_xmit(ReceivedAChar);
}
SciaRegs.SCIFFRX.bit.RXFFINTCLR = 1; // clear Receive interrupt flag
ReceivedCount++;
}
void error()
{
ErrorCount++;
asm(" ESTOP0"); // Uncomment to stop the test here
for (;;);
}
// SCIA 8-bit word, baud rate 0x000F, default, 1 STOP bit, no parity
void scia_init()
{
// Note: Clocks were turned on to the SCIA peripheral
// in the InitSysCtrl() function
// Reset FIFO's
SciaRegs.SCIFFTX.all=0x8000;
SciaRegs.SCICCR.all =0x0007; // 1 stop bit, No loopback
// No parity,8 char bits,
// async mode, idle-line protocol
SciaRegs.SCICTL1.all =0x0003; // enable TX, RX, internal SCICLK,
// Disable RX ERR, SLEEP, TXWAKE
SciaRegs.SCICTL2.all =0x0003;
SciaRegs.SCICTL2.bit.RXBKINTENA =1;
SciaRegs.SCICTL1.all =0x0023; // Relinquish SCI from Reset
}
// SCIB 8-bit word, baud rate 0x000F, default, 1 STOP bit, no parity
void scib_init()
{
// Reset FIFO's
ScibRegs.SCIFFTX.all=0x8000;
// 1 stop bit, No parity, 8-bit character
// No loopback
ScibRegs.SCICCR.all = 0x0007;
// Enable TX, RX, Use internal SCICLK
ScibRegs.SCICTL1.all = 0x0003;
// Disable RxErr, Sleep, TX Wake,
// Diable Rx Interrupt, Tx Interrupt
ScibRegs.SCICTL2.all = 0x0000;
// Relinquish SCI-A from reset
ScibRegs.SCICTL1.all = 0x0023;
return;
}
// Transmit a character from the SCI-A'
void scia_xmit(int a)
{
SciaRegs.SCITXBUF=a;
}
// Transmit a character from the SCI-B'
void scib_xmit(int a)
{
ScibRegs.SCITXBUF=a;
}
//------------------------------------------------
// Perform autobaud lock with the host.
// Note that if autobaud never occurs
// the program will hang in this routine as there
// is no timeout mechanism included.
//------------------------------------------------
void scia_AutobaudLock()
{
SciaRegs.SCICTL1.bit.SWRESET = 0;
SciaRegs.SCICTL1.bit.SWRESET = 1;
// Must prime baud register with >= 1
SciaRegs.SCIHBAUD = 0;
SciaRegs.SCILBAUD = 1;
// Prepare for autobaud detection
// Make sure the ABD bit is clear by writing a 1 to ABDCLR
// Set the CDC bit to enable autobaud detection
SciaRegs.SCIFFCT.bit.ABDCLR = 1;
SciaRegs.SCIFFCT.bit.CDC = 1;
// Wait until we correctly read an
// 'A' or 'a' and lock
//
// As long as Autobaud calibration is enabled (CDC = 1),
// SCI-B (host) will continue transmitting 'A'. This will
// continue until interrupted by the SCI-A RX ISR, where
// SCI-A RXBUF receives 'A', autobaud-locks (ABDCLR=1
// CDC=0),and returns an 'A' back to the host. Then control
// is returned to this loop and the loop is exited.
//
// NOTE: ABD will become set sometime between
// scib_xmit and the DELAY_US loop, and
// the SCI-A RX ISR will be triggered.
// Upon returning and reaching the if-statement,
// ABD will have been cleared again by the ISR.
while(SciaRegs.SCIFFCT.bit.CDC== 1)
{
// Note the lower the baud rate the longer
// this delay has to be to allow the other end
// to echo back a character (about 4 characters long)
// Make this really long since we are going through all
// the baud rates.
DELAY_US(280000L);
if(SciaRegs.SCIFFCT.bit.CDC == 1)
scib_xmit('A'); // host transmits 'A'
}
return;
}
//===========================================================================
// No more.
//===========================================================================