UKSS_ICE/v120/DSP2833x_examples/hrpwm/Example_2833xHRPWM.c
nelolik b8a0477c5c init commit.
Проект каким он достался от Димы.
2021-02-15 09:56:27 +03:00

377 lines
14 KiB
C

// TI File $Revision: /main/14 $
// Checkin $Date: May 5, 2008 15:25:53 $
//###########################################################################
//
// FILE: Example_2833xHRPWM.c
//
// TITLE: DSP2833x Device HRPWM example
//
// ASSUMPTIONS:
//
//
// This program requires the DSP2833x header files.
//
// Monitor ePWM1-ePWM4 pins on an oscilloscope as described
// below.
//
// EPWM1A is on GPIO0
// EPWM1B is on GPIO1
//
// EPWM2A is on GPIO2
// EPWM2B is on GPIO3
//
// EPWM3A is on GPIO4
// EPWM3B is on GPIO5
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This example modifies the MEP control registers to show edge displacement
// due to the HRPWM control extension of the respective ePWM module
// All ePWM1A,2A,3A,4A channels (GPIO0, GPIO2, GPIO4, GPIO6) will have fine edge movement
// due to HRPWM logic
//
// 1. 15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT),
// ePWM1A toggle low/high with MEP control on rising edge
// 15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT),
// ePWM1B toggle low/high with NO HRPWM control
//
// 2. 7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT),
// ePWM2A toggle low/high with MEP control on rising edge
// 7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT),
// ePWM2B toggle low/high with NO HRPWM control
//
// 3. 15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT),
// ePWM3A toggle as high/low with MEP control on falling edge
// 15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT),
// ePWM3B toggle low/high with NO HRPWM control
//
// 4. 7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT),
// ePWM4A toggle as high/low with MEP control on falling edge
// 7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT),
// ePWM4B toggle low/high with NO HRPWM control
//
//
//###########################################################################
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#include "DSP2833x_EPwm_defines.h" // useful defines for initialization
// Declare your function prototypes here
//---------------------------------------------------------------
void HRPWM1_Config(int);
void HRPWM2_Config(int);
void HRPWM3_Config(int);
void HRPWM4_Config(int);
// General System nets - Useful for debug
Uint16 i,j, DutyFine, n,update;
Uint32 temp;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this case, just init GPIO for ePWM1-ePWM4
// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3, ePWM4
// These functions are in the DSP2833x_EPwm.c file
InitEPwm1Gpio();
InitEPwm2Gpio();
InitEPwm3Gpio();
InitEPwm4Gpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// For this example, only initialize the ePWM
// Step 5. User specific code, enable interrupts:
update =1;
DutyFine =0;
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS;
// Some useful Period vs Frequency values
// SYSCLKOUT = 150MHz 100 MHz
// -----------------------------------------
// Period Frequency Frequency
// 1000 150 kHz 100 KHz
// 800 187 kHz 125 KHz
// 600 250 kHz 167 KHz
// 500 300 kHz 200 KHz
// 250 600 kHz 400 KHz
// 200 750 kHz 500 KHz
// 100 1.5 MHz 1.0 MHz
// 50 3.0 MHz 2.0 MHz
// 25 6.0 MHz 4.0 MHz
// 20 7.5 MHz 5.0 MHz
// 12 12.5 MHz 8.33 MHz
// 10 15.0 MHz 10.0 MHz
// 9 16.7 MHz 11.1 MHz
// 8 18.8 MHz 12.5 MHz
// 7 21.4 MHz 14.3 MHz
// 6 25.0 MHz 16.7 MHz
// 5 30.0 MHz 20.0 MHz
//====================================================================
// ePWM and HRPWM register initializaition
//====================================================================
HRPWM1_Config(10); // ePWM1 target, 15 MHz PWM (SYSCLK=150MHz) or 10 MHz PWM (SYSCLK=100MHz)
HRPWM2_Config(20); // ePWM2 target, 7.5 MHz PWM (SYSCLK=150MHz) or 5 MHz PWM (SYSCLK=100MHz)
HRPWM3_Config(10); // ePWM3 target, 15 MHz PWM (SYSCLK=150MHz) or 10 MHz PWM (SYSCLK=100MHz)
HRPWM4_Config(20); // ePWM4 target, 7.5 MHz PWM (SYSCLK=150MHz) or 5 MHz PWM (SYSCLK=100MHz)
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
EDIS;
while (update ==1)
{
for(DutyFine =1; DutyFine <256 ;DutyFine ++)
{
// Example, write to the HRPWM extension of CMPA
EPwm1Regs.CMPA.half.CMPAHR = DutyFine << 8; // Left shift by 8 to write into MSB bits
EPwm2Regs.CMPA.half.CMPAHR = DutyFine << 8; // Left shift by 8 to write into MSB bits
// Example, 32-bit write to CMPA:CMPAHR
EPwm3Regs.CMPA.all = ((Uint32)EPwm3Regs.CMPA.half.CMPA << 16) + (DutyFine << 8);
EPwm4Regs.CMPA.all = ((Uint32)EPwm4Regs.CMPA.half.CMPA << 16) + (DutyFine << 8);
for (i=0;i<10000;i++){} // Dummy delay between MEP changes
}
}
}
void HRPWM1_Config(period)
{
// ePWM1 register configuration with HRPWM
// ePWM1A toggle low/high with MEP control on Rising edge
EPwm1Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm1Regs.TBPRD = period-1; // PWM frequency = 1 / period
EPwm1Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially
EPwm1Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension
EPwm1Regs.CMPB = period / 2; // set duty 50% initially
EPwm1Regs.TBPHS.all = 0;
EPwm1Regs.TBCTR = 0;
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // EPWM1 is the Master
EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm1Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // PWM toggle low/high
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET;
EPwm1Regs.AQCTLB.bit.ZRO = AQ_CLEAR;
EPwm1Regs.AQCTLB.bit.CBU = AQ_SET;
EALLOW;
EPwm1Regs.HRCNFG.all = 0x0;
EPwm1Regs.HRCNFG.bit.EDGMODE = HR_REP; //MEP control on Rising edge
EPwm1Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm1Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
void HRPWM2_Config(period)
{
// ePWM2 register configuration with HRPWM
// ePWM2A toggle low/high with MEP control on Rising edge
EPwm2Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm2Regs.TBPRD = period-1; // PWM frequency = 1 / period
EPwm2Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially
EPwm2Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension
EPwm2Regs.CMPB = period / 2; // set duty 50% initially
EPwm2Regs.TBPHS.all = 0;
EPwm2Regs.TBCTR = 0;
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM2 is the Master
EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm2Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // PWM toggle low/high
EPwm2Regs.AQCTLA.bit.CAU = AQ_SET;
EPwm2Regs.AQCTLB.bit.ZRO = AQ_CLEAR;
EPwm2Regs.AQCTLB.bit.CBU = AQ_SET;
EALLOW;
EPwm2Regs.HRCNFG.all = 0x0;
EPwm2Regs.HRCNFG.bit.EDGMODE = HR_REP; //MEP control on Rising edge
EPwm2Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm2Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
void HRPWM3_Config(period)
{
// ePWM3 register configuration with HRPWM
// ePWM3A toggle high/low with MEP control on falling edge
EPwm3Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm3Regs.TBPRD = period-1; // PWM frequency = 1 / period
EPwm3Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially
EPwm3Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension
EPwm3Regs.CMPB = period / 2; // set duty 50% initially
EPwm3Regs.TBPHS.all = 0;
EPwm3Regs.TBCTR = 0;
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM3 is the Master
EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm3Regs.AQCTLA.bit.ZRO = AQ_SET; // PWM toggle high/low
EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm3Regs.AQCTLB.bit.ZRO = AQ_SET;
EPwm3Regs.AQCTLB.bit.CBU = AQ_CLEAR;
EALLOW;
EPwm3Regs.HRCNFG.all = 0x0;
EPwm3Regs.HRCNFG.bit.EDGMODE = HR_FEP; //MEP control on falling edge
EPwm3Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm3Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
void HRPWM4_Config(period)
{
// ePWM4 register configuration with HRPWM
// ePWM4A toggle high/low with MEP control on falling edge
EPwm4Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm4Regs.TBPRD = period-1; // PWM frequency = 1 / period
EPwm4Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially
EPwm4Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension
EPwm4Regs.CMPB = period / 2; // set duty 50% initially
EPwm4Regs.TBPHS.all = 0;
EPwm4Regs.TBCTR = 0;
EPwm4Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm4Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM4 is the Master
EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm4Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm4Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm4Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm4Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm4Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm4Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm4Regs.AQCTLA.bit.ZRO = AQ_SET; // PWM toggle high/low
EPwm4Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm4Regs.AQCTLB.bit.ZRO = AQ_SET;
EPwm4Regs.AQCTLB.bit.CBU = AQ_CLEAR;
EALLOW;
EPwm4Regs.HRCNFG.all = 0x0;
EPwm4Regs.HRCNFG.bit.EDGMODE = HR_FEP; // MEP control on falling edge
EPwm4Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm4Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}