// TI File $Revision: /main/14 $ // Checkin $Date: May 5, 2008 15:25:53 $ //########################################################################### // // FILE: Example_2833xHRPWM.c // // TITLE: DSP2833x Device HRPWM example // // ASSUMPTIONS: // // // This program requires the DSP2833x header files. // // Monitor ePWM1-ePWM4 pins on an oscilloscope as described // below. // // EPWM1A is on GPIO0 // EPWM1B is on GPIO1 // // EPWM2A is on GPIO2 // EPWM2B is on GPIO3 // // EPWM3A is on GPIO4 // EPWM3B is on GPIO5 // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This example modifies the MEP control registers to show edge displacement // due to the HRPWM control extension of the respective ePWM module // All ePWM1A,2A,3A,4A channels (GPIO0, GPIO2, GPIO4, GPIO6) will have fine edge movement // due to HRPWM logic // // 1. 15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT), // ePWM1A toggle low/high with MEP control on rising edge // 15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT), // ePWM1B toggle low/high with NO HRPWM control // // 2. 7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT), // ePWM2A toggle low/high with MEP control on rising edge // 7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT), // ePWM2B toggle low/high with NO HRPWM control // // 3. 15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT), // ePWM3A toggle as high/low with MEP control on falling edge // 15MHz PWM (for 150 MHz SYSCLKOUT) or 10MHz PWM (for 100MHz SYSCLKOUT), // ePWM3B toggle low/high with NO HRPWM control // // 4. 7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT), // ePWM4A toggle as high/low with MEP control on falling edge // 7.5MHz PWM (for 150 MHz SYSCLKOUT) or 5MHz PWM (for 100MHz SYSCLKOUT), // ePWM4B toggle low/high with NO HRPWM control // // //########################################################################### // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File #include "DSP2833x_EPwm_defines.h" // useful defines for initialization // Declare your function prototypes here //--------------------------------------------------------------- void HRPWM1_Config(int); void HRPWM2_Config(int); void HRPWM3_Config(int); void HRPWM4_Config(int); // General System nets - Useful for debug Uint16 i,j, DutyFine, n,update; Uint32 temp; void main(void) { // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // For this case, just init GPIO for ePWM1-ePWM4 // For this case just init GPIO pins for ePWM1, ePWM2, ePWM3, ePWM4 // These functions are in the DSP2833x_EPwm.c file InitEPwm1Gpio(); InitEPwm2Gpio(); InitEPwm3Gpio(); InitEPwm4Gpio(); // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example // For this example, only initialize the ePWM // Step 5. User specific code, enable interrupts: update =1; DutyFine =0; EALLOW; SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; EDIS; // Some useful Period vs Frequency values // SYSCLKOUT = 150MHz 100 MHz // ----------------------------------------- // Period Frequency Frequency // 1000 150 kHz 100 KHz // 800 187 kHz 125 KHz // 600 250 kHz 167 KHz // 500 300 kHz 200 KHz // 250 600 kHz 400 KHz // 200 750 kHz 500 KHz // 100 1.5 MHz 1.0 MHz // 50 3.0 MHz 2.0 MHz // 25 6.0 MHz 4.0 MHz // 20 7.5 MHz 5.0 MHz // 12 12.5 MHz 8.33 MHz // 10 15.0 MHz 10.0 MHz // 9 16.7 MHz 11.1 MHz // 8 18.8 MHz 12.5 MHz // 7 21.4 MHz 14.3 MHz // 6 25.0 MHz 16.7 MHz // 5 30.0 MHz 20.0 MHz //==================================================================== // ePWM and HRPWM register initializaition //==================================================================== HRPWM1_Config(10); // ePWM1 target, 15 MHz PWM (SYSCLK=150MHz) or 10 MHz PWM (SYSCLK=100MHz) HRPWM2_Config(20); // ePWM2 target, 7.5 MHz PWM (SYSCLK=150MHz) or 5 MHz PWM (SYSCLK=100MHz) HRPWM3_Config(10); // ePWM3 target, 15 MHz PWM (SYSCLK=150MHz) or 10 MHz PWM (SYSCLK=100MHz) HRPWM4_Config(20); // ePWM4 target, 7.5 MHz PWM (SYSCLK=150MHz) or 5 MHz PWM (SYSCLK=100MHz) EALLOW; SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; EDIS; while (update ==1) { for(DutyFine =1; DutyFine <256 ;DutyFine ++) { // Example, write to the HRPWM extension of CMPA EPwm1Regs.CMPA.half.CMPAHR = DutyFine << 8; // Left shift by 8 to write into MSB bits EPwm2Regs.CMPA.half.CMPAHR = DutyFine << 8; // Left shift by 8 to write into MSB bits // Example, 32-bit write to CMPA:CMPAHR EPwm3Regs.CMPA.all = ((Uint32)EPwm3Regs.CMPA.half.CMPA << 16) + (DutyFine << 8); EPwm4Regs.CMPA.all = ((Uint32)EPwm4Regs.CMPA.half.CMPA << 16) + (DutyFine << 8); for (i=0;i<10000;i++){} // Dummy delay between MEP changes } } } void HRPWM1_Config(period) { // ePWM1 register configuration with HRPWM // ePWM1A toggle low/high with MEP control on Rising edge EPwm1Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load EPwm1Regs.TBPRD = period-1; // PWM frequency = 1 / period EPwm1Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially EPwm1Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension EPwm1Regs.CMPB = period / 2; // set duty 50% initially EPwm1Regs.TBPHS.all = 0; EPwm1Regs.TBCTR = 0; EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // EPWM1 is the Master EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1; EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm1Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // PWM toggle low/high EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; EPwm1Regs.AQCTLB.bit.ZRO = AQ_CLEAR; EPwm1Regs.AQCTLB.bit.CBU = AQ_SET; EALLOW; EPwm1Regs.HRCNFG.all = 0x0; EPwm1Regs.HRCNFG.bit.EDGMODE = HR_REP; //MEP control on Rising edge EPwm1Regs.HRCNFG.bit.CTLMODE = HR_CMP; EPwm1Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO; EDIS; } void HRPWM2_Config(period) { // ePWM2 register configuration with HRPWM // ePWM2A toggle low/high with MEP control on Rising edge EPwm2Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load EPwm2Regs.TBPRD = period-1; // PWM frequency = 1 / period EPwm2Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially EPwm2Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension EPwm2Regs.CMPB = period / 2; // set duty 50% initially EPwm2Regs.TBPHS.all = 0; EPwm2Regs.TBCTR = 0; EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM2 is the Master EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1; EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm2Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // PWM toggle low/high EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; EPwm2Regs.AQCTLB.bit.ZRO = AQ_CLEAR; EPwm2Regs.AQCTLB.bit.CBU = AQ_SET; EALLOW; EPwm2Regs.HRCNFG.all = 0x0; EPwm2Regs.HRCNFG.bit.EDGMODE = HR_REP; //MEP control on Rising edge EPwm2Regs.HRCNFG.bit.CTLMODE = HR_CMP; EPwm2Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO; EDIS; } void HRPWM3_Config(period) { // ePWM3 register configuration with HRPWM // ePWM3A toggle high/low with MEP control on falling edge EPwm3Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load EPwm3Regs.TBPRD = period-1; // PWM frequency = 1 / period EPwm3Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially EPwm3Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension EPwm3Regs.CMPB = period / 2; // set duty 50% initially EPwm3Regs.TBPHS.all = 0; EPwm3Regs.TBCTR = 0; EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM3 is the Master EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1; EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm3Regs.AQCTLA.bit.ZRO = AQ_SET; // PWM toggle high/low EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR; EPwm3Regs.AQCTLB.bit.ZRO = AQ_SET; EPwm3Regs.AQCTLB.bit.CBU = AQ_CLEAR; EALLOW; EPwm3Regs.HRCNFG.all = 0x0; EPwm3Regs.HRCNFG.bit.EDGMODE = HR_FEP; //MEP control on falling edge EPwm3Regs.HRCNFG.bit.CTLMODE = HR_CMP; EPwm3Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO; EDIS; } void HRPWM4_Config(period) { // ePWM4 register configuration with HRPWM // ePWM4A toggle high/low with MEP control on falling edge EPwm4Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load EPwm4Regs.TBPRD = period-1; // PWM frequency = 1 / period EPwm4Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially EPwm4Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension EPwm4Regs.CMPB = period / 2; // set duty 50% initially EPwm4Regs.TBPHS.all = 0; EPwm4Regs.TBCTR = 0; EPwm4Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; EPwm4Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM4 is the Master EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE; EPwm4Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; EPwm4Regs.TBCTL.bit.CLKDIV = TB_DIV1; EPwm4Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO; EPwm4Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO; EPwm4Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; EPwm4Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW; EPwm4Regs.AQCTLA.bit.ZRO = AQ_SET; // PWM toggle high/low EPwm4Regs.AQCTLA.bit.CAU = AQ_CLEAR; EPwm4Regs.AQCTLB.bit.ZRO = AQ_SET; EPwm4Regs.AQCTLB.bit.CBU = AQ_CLEAR; EALLOW; EPwm4Regs.HRCNFG.all = 0x0; EPwm4Regs.HRCNFG.bit.EDGMODE = HR_FEP; // MEP control on falling edge EPwm4Regs.HRCNFG.bit.CTLMODE = HR_CMP; EPwm4Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO; EDIS; }