168 lines
6.2 KiB
C
168 lines
6.2 KiB
C
// TI File $Revision: /main/2 $
|
|
// Checkin $Date: April 21, 2008 15:44:31 $
|
|
//###########################################################################
|
|
//
|
|
// FILE: Example_2833xFPU.c
|
|
//
|
|
// TITLE: DSP2833x Device Getting Started Program.
|
|
//
|
|
// ASSUMPTIONS:
|
|
//
|
|
// This program requires the DSP2833x header files.
|
|
//
|
|
// Other then boot mode configuration, no other hardware configuration
|
|
// is required.
|
|
//
|
|
//
|
|
// As supplied, this project is configured for "boot to SARAM"
|
|
// operation. The 2833x Boot Mode table is shown below.
|
|
// For information on configuring the boot mode of an eZdsp,
|
|
// please refer to the documentation included with the eZdsp,
|
|
//
|
|
// $Boot_Table:
|
|
//
|
|
// GPIO87 GPIO86 GPIO85 GPIO84
|
|
// XA15 XA14 XA13 XA12
|
|
// PU PU PU PU
|
|
// ==========================================
|
|
// 1 1 1 1 Jump to Flash
|
|
// 1 1 1 0 SCI-A boot
|
|
// 1 1 0 1 SPI-A boot
|
|
// 1 1 0 0 I2C-A boot
|
|
// 1 0 1 1 eCAN-A boot
|
|
// 1 0 1 0 McBSP-A boot
|
|
// 1 0 0 1 Jump to XINTF x16
|
|
// 1 0 0 0 Jump to XINTF x32
|
|
// 0 1 1 1 Jump to OTP
|
|
// 0 1 1 0 Parallel GPIO I/O boot
|
|
// 0 1 0 1 Parallel XINTF boot
|
|
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
|
|
// 0 0 1 1 Branch to check boot mode
|
|
// 0 0 1 0 Boot to flash, bypass ADC cal
|
|
// 0 0 0 1 Boot to SARAM, bypass ADC cal
|
|
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
|
|
// Boot_Table_End$
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// The code calculates two y=mx+b equations. The variables are all
|
|
// 32-bit floating-point.
|
|
//
|
|
// Two projects are supplied:
|
|
//
|
|
// Example_fpu_hardware.pjt (floating-point):
|
|
//
|
|
// If the Example_2833xFPU_hardware.pjt file is used then the compiler
|
|
// will generate floating point instructions to do these calculations.
|
|
// To compile the project for floating point, the following Build Options were used:
|
|
// 1. Project->Build Options-> Compiler Tab-> Advanced category:
|
|
// a. in textbox: compiler options -v28 --float_support=fpu32 are set
|
|
// b. OR the following is equivalent to "a.": pull-down menu next to
|
|
// "Floating Point Support"-> "fpu32" selected.
|
|
// 2. Project->Build Options-> Linker Tab-> Libraries category:
|
|
// a. runtime support library used is rts2800_fpu32.lib.
|
|
// 3. Not included in this example: If the project includes any other libraries,
|
|
// they must also be compiled with floating point instructions.
|
|
//
|
|
// Example_fpu_software.pjt (fixed-point emulates floating-point with software):
|
|
//
|
|
// If the Example_2833xFPU_software.pjt file is used, then the compiler
|
|
// will only used fixed point instructions. This means the runtime
|
|
// support library will be used to emulate floating point.
|
|
// This will also run on C28x devices without the floating point unit.
|
|
// To compile the project for fixed point, the following Build Options were used:
|
|
// 1. Project->Build Options-> Compiler Tab-> Advanced category:
|
|
// a. in textbox: compiler option --float_support=fpu32 is REMOVED
|
|
// -v28 should not be removed
|
|
// b. OR the following is equivalent to "a.": pull-down menu next to
|
|
// "Floating Point Support"-> "None" selected.
|
|
// 2. Project->Build Options-> Linker Tab-> Libraries category:
|
|
// a. runtime support library used is rts2800.lib or rts2800_ml.lib.
|
|
// 3. Not included in this example: If the project includes any other libraries,
|
|
// they must also be compiled with fixed point instructions.
|
|
//
|
|
// Watch Variables:
|
|
// y1
|
|
// y2
|
|
// FPU registers (optional)
|
|
//
|
|
//###########################################################################
|
|
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
|
|
// $Release Date: August 1, 2008 $
|
|
//###########################################################################
|
|
|
|
|
|
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
|
|
|
|
float y1, y2;
|
|
float m1, m2;
|
|
float x1, x2;
|
|
float b1, b2;
|
|
|
|
|
|
void main(void)
|
|
{
|
|
|
|
// Step 1. Initialize System Control:
|
|
// PLL, WatchDog, enable Peripheral Clocks
|
|
// This example function is found in the DSP2833x_SysCtrl.c file.
|
|
InitSysCtrl();
|
|
|
|
// Step 2. Initalize GPIO:
|
|
// This example function is found in the DSP2833x_Gpio.c file and
|
|
// illustrates how to set the GPIO to it's default state.
|
|
// InitGpio(); // Skipped for this example
|
|
|
|
|
|
// Step 3. Clear all interrupts and initialize PIE vector table:
|
|
// Disable CPU interrupts
|
|
DINT;
|
|
|
|
// Initialize the PIE control registers to their default state.
|
|
// The default state is all PIE interrupts disabled and flags
|
|
// are cleared.
|
|
// This function is found in the DSP2833x_PieCtrl.c file.
|
|
InitPieCtrl();
|
|
|
|
// Disable CPU interrupts and clear all CPU interrupt flags:
|
|
IER = 0x0000;
|
|
IFR = 0x0000;
|
|
|
|
// Initialize the PIE vector table with pointers to the shell Interrupt
|
|
// Service Routines (ISR).
|
|
// This will populate the entire table, even if the interrupt
|
|
// is not used in this example. This is useful for debug purposes.
|
|
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
|
|
// This function is found in DSP2833x_PieVect.c.
|
|
InitPieVectTable();
|
|
|
|
// Interrupts that are used in this example are re-mapped to
|
|
// ISR functions found within this file.
|
|
|
|
|
|
// Step 5. User specific code, enable interrupts:
|
|
|
|
//
|
|
// Calculate two y=mx+b equations.
|
|
|
|
y1 = 0;
|
|
y2 = 0;
|
|
m1 = .5;
|
|
m2 = .6;
|
|
x1 = 3.4;
|
|
x2 = 7.3;
|
|
b1 = 4.2;
|
|
b2 = 8.9;
|
|
|
|
y1 = m1*x1 + b1;
|
|
y2 = m2*x2 + b2;
|
|
|
|
|
|
ESTOP0; // This is a software breakpoint
|
|
}
|
|
|
|
|
|
//===========================================================================
|
|
// No more.
|
|
//===========================================================================
|