UKSS_ICE/v120/DSP2833x_examples/fpu/Example_2833xFPU.c
nelolik b8a0477c5c init commit.
Проект каким он достался от Димы.
2021-02-15 09:56:27 +03:00

168 lines
6.2 KiB
C

// TI File $Revision: /main/2 $
// Checkin $Date: April 21, 2008 15:44:31 $
//###########################################################################
//
// FILE: Example_2833xFPU.c
//
// TITLE: DSP2833x Device Getting Started Program.
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Other then boot mode configuration, no other hardware configuration
// is required.
//
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// The code calculates two y=mx+b equations. The variables are all
// 32-bit floating-point.
//
// Two projects are supplied:
//
// Example_fpu_hardware.pjt (floating-point):
//
// If the Example_2833xFPU_hardware.pjt file is used then the compiler
// will generate floating point instructions to do these calculations.
// To compile the project for floating point, the following Build Options were used:
// 1. Project->Build Options-> Compiler Tab-> Advanced category:
// a. in textbox: compiler options -v28 --float_support=fpu32 are set
// b. OR the following is equivalent to "a.": pull-down menu next to
// "Floating Point Support"-> "fpu32" selected.
// 2. Project->Build Options-> Linker Tab-> Libraries category:
// a. runtime support library used is rts2800_fpu32.lib.
// 3. Not included in this example: If the project includes any other libraries,
// they must also be compiled with floating point instructions.
//
// Example_fpu_software.pjt (fixed-point emulates floating-point with software):
//
// If the Example_2833xFPU_software.pjt file is used, then the compiler
// will only used fixed point instructions. This means the runtime
// support library will be used to emulate floating point.
// This will also run on C28x devices without the floating point unit.
// To compile the project for fixed point, the following Build Options were used:
// 1. Project->Build Options-> Compiler Tab-> Advanced category:
// a. in textbox: compiler option --float_support=fpu32 is REMOVED
// -v28 should not be removed
// b. OR the following is equivalent to "a.": pull-down menu next to
// "Floating Point Support"-> "None" selected.
// 2. Project->Build Options-> Linker Tab-> Libraries category:
// a. runtime support library used is rts2800.lib or rts2800_ml.lib.
// 3. Not included in this example: If the project includes any other libraries,
// they must also be compiled with fixed point instructions.
//
// Watch Variables:
// y1
// y2
// FPU registers (optional)
//
//###########################################################################
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
float y1, y2;
float m1, m2;
float x1, x2;
float b1, b2;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
// Step 5. User specific code, enable interrupts:
//
// Calculate two y=mx+b equations.
y1 = 0;
y2 = 0;
m1 = .5;
m2 = .6;
x1 = 3.4;
x2 = 7.3;
b1 = 4.2;
b2 = 8.9;
y1 = m1*x1 + b1;
y2 = m2*x2 + b2;
ESTOP0; // This is a software breakpoint
}
//===========================================================================
// No more.
//===========================================================================