// TI File $Revision: /main/2 $ // Checkin $Date: April 21, 2008 15:44:31 $ //########################################################################### // // FILE: Example_2833xFPU.c // // TITLE: DSP2833x Device Getting Started Program. // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // Other then boot mode configuration, no other hardware configuration // is required. // // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // The code calculates two y=mx+b equations. The variables are all // 32-bit floating-point. // // Two projects are supplied: // // Example_fpu_hardware.pjt (floating-point): // // If the Example_2833xFPU_hardware.pjt file is used then the compiler // will generate floating point instructions to do these calculations. // To compile the project for floating point, the following Build Options were used: // 1. Project->Build Options-> Compiler Tab-> Advanced category: // a. in textbox: compiler options -v28 --float_support=fpu32 are set // b. OR the following is equivalent to "a.": pull-down menu next to // "Floating Point Support"-> "fpu32" selected. // 2. Project->Build Options-> Linker Tab-> Libraries category: // a. runtime support library used is rts2800_fpu32.lib. // 3. Not included in this example: If the project includes any other libraries, // they must also be compiled with floating point instructions. // // Example_fpu_software.pjt (fixed-point emulates floating-point with software): // // If the Example_2833xFPU_software.pjt file is used, then the compiler // will only used fixed point instructions. This means the runtime // support library will be used to emulate floating point. // This will also run on C28x devices without the floating point unit. // To compile the project for fixed point, the following Build Options were used: // 1. Project->Build Options-> Compiler Tab-> Advanced category: // a. in textbox: compiler option --float_support=fpu32 is REMOVED // -v28 should not be removed // b. OR the following is equivalent to "a.": pull-down menu next to // "Floating Point Support"-> "None" selected. // 2. Project->Build Options-> Linker Tab-> Libraries category: // a. runtime support library used is rts2800.lib or rts2800_ml.lib. // 3. Not included in this example: If the project includes any other libraries, // they must also be compiled with fixed point instructions. // // Watch Variables: // y1 // y2 // FPU registers (optional) // //########################################################################### // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File float y1, y2; float m1, m2; float x1, x2; float b1, b2; void main(void) { // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. // Step 5. User specific code, enable interrupts: // // Calculate two y=mx+b equations. y1 = 0; y2 = 0; m1 = .5; m2 = .6; x1 = 3.4; x2 = 7.3; b1 = 4.2; b2 = 8.9; y1 = m1*x1 + b1; y2 = m2*x2 + b2; ESTOP0; // This is a software breakpoint } //=========================================================================== // No more. //===========================================================================