altera/MainController/RAM9X8_HWPBusMaster.vhd

207 lines
6.6 KiB
VHDL
Raw Normal View History

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity RAM9X8_HWPBusMaster is
generic(
REG_ADDR_CMD_2_UPPER_BYTE : integer := 44;
REG_ADDR_CMD_2_LOWER_BYTE : integer := 45;
REG_ADDR_CMD_1_UPPER_BYTE : integer := 46;
REG_ADDR_CMD_1_LOWER_BYTE : integer := 47;
REG_ADDR_DATA_2_UPPER_BYTE : integer := 48;
REG_ADDR_DATA_2_LOWER_BYTE : integer := 49;
REG_ADDR_DATA_1_UPPER_BYTE : integer := 50;
REG_ADDR_DATA_1_LOWER_BYTE : integer := 51;
DATA_BUS_WIDTH : integer := 8;
ADDRESS_BUS_WIDTH : integer := 9
);
port(
clk : in std_logic;
data : inout std_logic_vector(DATA_BUS_WIDTH - 1 downto 0);
address : in std_logic_vector(ADDRESS_BUS_WIDTH - 1 downto 0);
we : in std_logic;
oe : in std_logic;
ce : in std_logic;
hwpdataout : out std_logic;
hwpclk : out std_logic;
hwpdatain : in std_logic_vector(1 downto 0)
);
end entity;
architecture behavorial of RAM9X8_HWPBusMaster is
signal cmdBuf : std_logic_vector(31 downto 0) := (others => '0');
signal dataBuf : std_logic_vector(31 downto 0) := (others => '0');
signal tempBuf : std_logic_vector(31 downto 0) := (others => '0');
signal dataToSend : std_logic_vector(33 downto 0) := (others => '0');
signal cmdBuf_0_prev : std_logic := '0';
signal done : std_logic := '1';
type HWPSt is (Waiting, SendingData, ReceivingData, Checking);
signal HWPState : HWPSt := Waiting;
begin
process (we, oe, ce)
variable addr : integer range 0 to 2**ADDRESS_BUS_WIDTH - 1 := 0;
begin
if (ce = '0') then -- Если микросхема выбрана
addr := conv_integer(address);
if (addr = REG_ADDR_CMD_2_UPPER_BYTE or addr = REG_ADDR_CMD_2_LOWER_BYTE or addr = REG_ADDR_CMD_1_UPPER_BYTE or addr = REG_ADDR_CMD_1_LOWER_BYTE
or addr = REG_ADDR_DATA_2_UPPER_BYTE or addr = REG_ADDR_DATA_2_LOWER_BYTE or addr = REG_ADDR_DATA_1_UPPER_BYTE or addr = REG_ADDR_DATA_1_LOWER_BYTE) then
if (oe = '0' and we = '1') then -- Если сигнал чтения активен, а записи нет
case addr is
when REG_ADDR_CMD_2_UPPER_BYTE =>
data <= cmdBuf(31 downto 24);
when REG_ADDR_CMD_2_LOWER_BYTE =>
data <= cmdBuf(23 downto 16);
when REG_ADDR_CMD_1_UPPER_BYTE =>
data <= cmdBuf(15 downto 8);
when REG_ADDR_CMD_1_LOWER_BYTE =>
data(7 downto 1) <= cmdBuf(7 downto 1);
data(0) <= done;
when REG_ADDR_DATA_2_UPPER_BYTE =>
data <= tempBuf(29 downto 22);
when REG_ADDR_DATA_2_LOWER_BYTE =>
data <= tempBuf(21 downto 14);
when REG_ADDR_DATA_1_UPPER_BYTE =>
data <= tempBuf(13 downto 6);
when REG_ADDR_DATA_1_LOWER_BYTE =>
data(7 downto 2) <= tempBuf(5 downto 0);
data(1 downto 0) <= (others => '0');
when others =>
data <= (others => 'Z'); -- Запретить запись на шину
end case;
elsif (oe = '1' and we = '0') then -- Если сигнал записи активен, а чтения нет
case addr is
when REG_ADDR_CMD_2_UPPER_BYTE =>
cmdBuf(31 downto 24) <= data;
when REG_ADDR_CMD_2_LOWER_BYTE =>
cmdBuf(23 downto 16) <= data;
when REG_ADDR_CMD_1_UPPER_BYTE =>
cmdBuf(15 downto 8) <= data;
when REG_ADDR_CMD_1_LOWER_BYTE =>
cmdBuf(7 downto 0) <= data;
when REG_ADDR_DATA_2_UPPER_BYTE =>
dataBuf(31 downto 24) <= data;
when REG_ADDR_DATA_2_LOWER_BYTE =>
dataBuf(23 downto 16) <= data;
when REG_ADDR_DATA_1_UPPER_BYTE =>
dataBuf(15 downto 8) <= data;
when REG_ADDR_DATA_1_LOWER_BYTE =>
dataBuf(7 downto 0) <= data;
when others =>
data <= (others => 'Z'); -- Запретить запись на шину
end case;
else
data <= (others => 'Z'); -- Запретить запись на шину
end if;
else
data <= (others => 'Z'); -- Запретить запись на шину
end if;
else
data <= (others => 'Z'); -- Запретить запись на шину
end if;
end process;
process(clk) is
variable count : integer range 0 to 511 := 0;
variable state : integer range 0 to 1 := 0;
variable countBit : integer range 0 to 32 := 0;
begin
if rising_edge(clk) then
case HWPState is
when Waiting =>
if cmdBuf(0) = '1' and cmdBuf_0_prev = '0' then
done <= '1';
if cmdBuf(14) = '0' then
if cmdBuf(13) = '0' then
dataToSend(33 downto 22) <= (others => '0');
dataToSend(21 downto 16) <= cmdBuf(15 downto 10);
dataToSend(15 downto 0) <= cmdBuf(31 downto 16);
countBit := 21;
else
dataToSend(33) <= '0';
dataToSend(32 downto 30) <= cmdBuf(15 downto 13);
dataToSend(29 downto 0) <= dataBuf(31 downto 2);
countBit := 32;
end if;
else
dataToSend(33) <= '1';
dataToSend(32 downto 2) <= (others => '0');
dataToSend(1 downto 0) <= cmdBuf(15 downto 14);
countBit := 1;
end if;
HWPState <= SendingData;
count := 0;
state := 0;
end if;
when SendingData =>
if count < 511 and state = 0 then
if count = 0 then
hwpdataout <= dataToSend(countBit);
end if;
count := count + 1;
elsif count = 511 and state = 0 then
hwpclk <= '0';
count := 0;
state := 1;
elsif count < 511 and state = 1 then
count := count + 1;
elsif count = 511 and state = 1 then
hwpclk <= '1';
count := 0;
state := 0;
if countBit > 0 then
countBit := countBit - 1;
else
if dataToSend(33) = '1' then
HWPState <= ReceivingData;
countBit := 29;
else
HWPState <= Checking;
end if;
end if;
end if;
when ReceivingData =>
if count < 511 and state = 0 then
count := count + 1;
elsif count = 511 and state = 0 then
hwpclk <= '0';
count := 0;
state := 1;
if dataToSend(1) = '0' then
tempBuf(countBit) <= hwpdatain(0);
hwpdataout <= hwpdatain(0);
else
tempBuf(countBit) <= hwpdatain(1);
hwpdataout <= hwpdatain(1);
end if;
elsif count < 511 and state = 1 then
count := count + 1;
elsif count = 511 and state = 1 then
hwpclk <= '1';
count := 0;
state := 0;
if countBit > 0 then
countBit := countBit - 1;
else
HWPState <= Checking;
end if;
end if;
when Checking =>
done <= '0';
HWPState <= Waiting;
when others =>
HWPState <= Waiting;
end case;
cmdBuf_0_prev <= cmdBuf(0);
end if;
end process;
end behavorial;