#8 Чуть доработан модуль adc_sim и настройка режима ПЧ выведена в app_configs.h

This commit is contained in:
Razvalyaev 2025-01-20 11:41:55 +03:00
parent 3b5b9b86f7
commit 864a2dfcac
8 changed files with 65 additions and 46 deletions

View File

@ -5,19 +5,27 @@
Дата последнего обновления: 2021.11.08
**************************************************************************/
#ifndef DEF
#define DEF
#ifndef _APP_CONFIG
#define _APP_CONFIG
// раскомментировать, если есть сдвиг между обмотками ГЭД (30 град.)
#define SHIFT
#define ALG_MODE_SIMULINK ALG_MODE_SCALAR_OBOROTS
/*
ALG_MODE_UF_CONST,
ALG_MODE_SCALAR_OBOROTS,
ALG_MODE_SCALAR_POWER,
ALG_MODE_FOC_OBOROTS,
ALG_MODE_FOC_POWER
*/
#define SIMULINK_SEQUENCE V_PWM24_PHASE_SEQ_NORMAL_ABC
/* V_PWM24_PHASE_SEQ_NORMAL_ABC, - êðàñèâûé òîê, íåêðàñèâîå íàïðÿæåíèÿ
V_PWM24_PHASE_SEQ_NORMAL_BCA, - âñ¸ õåðíÿ
V_PWM24_PHASE_SEQ_NORMAL_CAB, - âñ¸ õåðíÿ
V_PWM24_PHASE_SEQ_REVERS_ACB, - âñ¸ õåðíÿ
V_PWM24_PHASE_SEQ_REVERS_CBA, - æîïà
V_PWM24_PHASE_SEQ_REVERS_BAC - æîïà
/* V_PWM24_PHASE_SEQ_NORMAL_ABC,
V_PWM24_PHASE_SEQ_NORMAL_BCA,
V_PWM24_PHASE_SEQ_NORMAL_CAB,
V_PWM24_PHASE_SEQ_REVERS_ACB,
V_PWM24_PHASE_SEQ_REVERS_CBA,
V_PWM24_PHASE_SEQ_REVERS_BAC
*/
#endif //DEF
#endif //_APP_CONFIG

View File

@ -41,7 +41,7 @@ void app_init(void) {
edrk.zadanie.iq_ZadanieU_Charge = _IQ(2500 / NORMA_ACP);
edrk.temper_limit_koeffs.sum_limit = _IQ(1);
simple_scalar1.fzad_add_max = _IQ(FZAD_ADD_MAX);
edrk.Mode_ScalarVectorUFConst = ALG_MODE_SCALAR_OBOROTS;
edrk.Mode_ScalarVectorUFConst = ALG_MODE_SIMULINK;
//edrk.Mode_ScalarVectorUFConst = ALG_MODE_FOC_OBOROTS;
edrk.zadanie.iq_power_zad = _IQ(1);

View File

@ -1,5 +1,5 @@
#ifndef INIT28335
#define INIT28335
#ifndef _APP_INIT
#define _APP_INIT
#include "app_includes.h"
@ -10,4 +10,4 @@ void edrk_init_variables_matlab(void);
void set_zadanie_u_charge_matlab(void);
void init_Uin_rms(void);
void init_flag_a(void);
#endif //INIT28335
#endif //_APP_INIT

View File

@ -119,4 +119,14 @@ void writeOutputParameters(real_T* xD) {
xD[nn++] = xpwm_time.Tc1_0;
xD[nn++] = xpwm_time.Tc1_1;
xD[nn++] = (AdcSim.udc1.adc_val);
xD[nn++] = (AdcSim.udc2.adc_val);
xD[nn++] = (AdcSim.ia1.adc_val);
xD[nn++] = (AdcSim.ib1.adc_val);
xD[nn++] = (AdcSim.ic1.adc_val);
xD[nn++] = (AdcSim.ia2.adc_val);
xD[nn++] = (AdcSim.ib2.adc_val);
xD[nn++] = (AdcSim.ic2.adc_val);
}

View File

@ -1,8 +1,8 @@
#include "simstruc.h"
#include "app_includes.h"
#ifndef PARAM
#define PARAM
#ifndef _APP_IO
#define _APP_IO
void readInputParameters(const real_T* u);
@ -13,5 +13,5 @@ extern int CAN_timeout[UNIT_QUA];
extern RS_DATA_STRUCT rs_a;
extern RS_DATA_STRUCT rs_b;
extern _iq iq_norm_ADC[COUNT_ARR_ADC_BUF][16];
#endif //PARAM
#endif //_APP_IO

View File

@ -9,27 +9,27 @@ void Simulate_ADC(SimStruct* S)
adcMeasure(&AdcSim.Measure, IN, 0);
adcConvert(&AdcSim.convertion, &AdcSim.udc1, AdcSim.Measure.udc1, 0);
adcConvert(&AdcSim.convertion, &AdcSim.udc2, AdcSim.Measure.udc2, 0);
adcConvert(&AdcSim.convertion, &AdcSim.ia1, AdcSim.Measure.ia1, 0);
adcConvert(&AdcSim.convertion, &AdcSim.ib1, AdcSim.Measure.ib1, 0);
adcConvert(&AdcSim.convertion, &AdcSim.ic1, AdcSim.Measure.ic1, 0);
adcConvert(&AdcSim.convertion, &AdcSim.ia2, AdcSim.Measure.ia2, 0);
adcConvert(&AdcSim.convertion, &AdcSim.ib2, AdcSim.Measure.ib2, 0);
adcConvert(&AdcSim.convertion, &AdcSim.ic2, AdcSim.Measure.ic2, 0);
adcConvert(&AdcSim.convertion, &AdcSim.udc1, AdcSim.Measure.udc1);
adcConvert(&AdcSim.convertion, &AdcSim.udc2, AdcSim.Measure.udc2);
adcConvert(&AdcSim.convertion, &AdcSim.ia1, AdcSim.Measure.ia1);
adcConvert(&AdcSim.convertion, &AdcSim.ib1, AdcSim.Measure.ib1);
adcConvert(&AdcSim.convertion, &AdcSim.ic1, AdcSim.Measure.ic1);
adcConvert(&AdcSim.convertion, &AdcSim.ia2, AdcSim.Measure.ia2);
adcConvert(&AdcSim.convertion, &AdcSim.ib2, AdcSim.Measure.ib2);
adcConvert(&AdcSim.convertion, &AdcSim.ic2, AdcSim.Measure.ic2);
}
void Init_ADC_Simulation()
{
adcInitConvertion(&AdcSim.convertion, NORMA_ACP, 2.5, 4096);
adcInitMeasure(&AdcSim.udc1, K_LEM_ADC[0], R_ADC[0], DEFAULT_ZERO_ADC);
adcInitMeasure(&AdcSim.udc2, K_LEM_ADC[1], R_ADC[1], DEFAULT_ZERO_ADC);
adcInitMeasure(&AdcSim.ia1, K_LEM_ADC[2], R_ADC[2], DEFAULT_ZERO_ADC);
adcInitMeasure(&AdcSim.ib1, K_LEM_ADC[3], R_ADC[3], DEFAULT_ZERO_ADC);
adcInitMeasure(&AdcSim.ic1, K_LEM_ADC[4], R_ADC[4], DEFAULT_ZERO_ADC);
adcInitMeasure(&AdcSim.ia2, K_LEM_ADC[5], R_ADC[5], DEFAULT_ZERO_ADC);
adcInitMeasure(&AdcSim.ib2, K_LEM_ADC[6], R_ADC[6], DEFAULT_ZERO_ADC);
adcInitMeasure(&AdcSim.ic2, K_LEM_ADC[7], R_ADC[7], DEFAULT_ZERO_ADC);
adcInitMeasure(&AdcSim.udc1, K_LEM_ADC[0], R_ADC[0], DEFAULT_ZERO_ADC, 0);
adcInitMeasure(&AdcSim.udc2, K_LEM_ADC[1], R_ADC[1], DEFAULT_ZERO_ADC, 0);
adcInitMeasure(&AdcSim.ia1, K_LEM_ADC[2], R_ADC[2], DEFAULT_ZERO_ADC, 0);
adcInitMeasure(&AdcSim.ib1, K_LEM_ADC[3], R_ADC[3], DEFAULT_ZERO_ADC, 0);
adcInitMeasure(&AdcSim.ic1, K_LEM_ADC[4], R_ADC[4], DEFAULT_ZERO_ADC, 0);
adcInitMeasure(&AdcSim.ia2, K_LEM_ADC[5], R_ADC[5], DEFAULT_ZERO_ADC, 0);
adcInitMeasure(&AdcSim.ib2, K_LEM_ADC[6], R_ADC[6], DEFAULT_ZERO_ADC, 0);
adcInitMeasure(&AdcSim.ic2, K_LEM_ADC[7], R_ADC[7], DEFAULT_ZERO_ADC, 0);
}
@ -40,11 +40,12 @@ void adcInitConvertion(AdcConvertionHandle* hconv, int norma_adc, double adc_amp
hconv->adc_bit_depth = adc_bit_depth;
}
void adcInitMeasure(AdcMeasureHandle* hmeasure, int k_lem_adc, int r_adc, int offset)
void adcInitMeasure(AdcMeasureHandle* hmeasure, int k_lem_adc, int r_adc, int offset, double real_satur)
{
hmeasure->k_lem_adc = k_lem_adc;
hmeasure->r_adc = r_adc;
hmeasure->offset = offset;
hmeasure->real_satur = real_satur;
}
void adcMeasure(AdcRealMeasureHandle *hrmeasure, const real_T* u, int startind)
@ -59,16 +60,15 @@ void adcMeasure(AdcRealMeasureHandle *hrmeasure, const real_T* u, int startind)
hrmeasure->ic2 = u[startind++];
}
void adcConvert(AdcConvertionHandle* hconv, AdcMeasureHandle* hmeasure, double realMeasure, double MeasureSatur)
void adcConvert(AdcConvertionHandle* hconv, AdcMeasureHandle* hmeasure, double realMeasure)
{
if (MeasureSatur != 0)
if (hmeasure->real_satur != 0)
{
if (realMeasure > MeasureSatur)
realMeasure = MeasureSatur;
else if (realMeasure < -MeasureSatur)
realMeasure = -MeasureSatur;
if (realMeasure > hmeasure->real_satur)
realMeasure = hmeasure->real_satur;
else if (realMeasure < -hmeasure->real_satur)
realMeasure = -hmeasure->real_satur;
}
// AdcMirror.ADCRESULT0 = (unsigned short)(realMeasure/MeasureSatur*2048. + (float)offset.Udc1);
hmeasure->adc_val =
(unsigned short)(realMeasure / hmeasure->k_lem_adc * hmeasure->r_adc / hconv->norma_adc / hconv->adc_amplitude * hconv->adc_bit_depth + (float)hmeasure->offset);
}

View File

@ -35,6 +35,7 @@ typedef struct
{
int adc_val;
double real_satur;
int r_adc;
int k_lem_adc;
int offset;
@ -63,10 +64,10 @@ AdcSimHandle AdcSim;
void Simulate_ADC(SimStruct* S);
void Init_ADC_Simulation();
void adcInitConvertion(AdcConvertionHandle* hconv, int norma_adc, int adc_amplitude, int adc_bit_depth);
void adcInitMeasure(AdcMeasureHandle* hmeasure, int k_lem_adc, int r_adc, int offset);
void adcInitConvertion(AdcConvertionHandle* hconv, int norma_adc, double adc_amplitude, int adc_bit_depth);
void adcInitMeasure(AdcMeasureHandle* hmeasure, int k_lem_adc, int r_adc, int offset, double real_satur);
void adcMeasure(AdcRealMeasureHandle* hrmeasure, const real_T* u, int startind);
void adcConvert(AdcConvertionHandle* hconv, AdcMeasureHandle* hmeasure, double realMeasure, double MeasureSatur);
void adcConvert(AdcConvertionHandle* hconv, AdcMeasureHandle* hmeasure, double realMeasure);
#endif //PWM_SIM

Binary file not shown.