ds18b20-MODBUS/john103C6T6/Core/Src/main.c
2025-06-27 16:40:42 +03:00

407 lines
9.8 KiB
C
Raw Blame History

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "can.h"
#include "i2c.h"
#include "rtc.h"
#include "spi.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "dallas_tools.h"
#include "def.h"
#include <stdio.h>
#include "rs_message.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
int fputc(int ch, FILE *f)
{
HAL_UART_Transmit(&huart1, (uint8_t *)&ch, 1, HAL_MAX_DELAY);
return ch;
}
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
uint16_t iter,cnt=5;
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
float temperature;
extern uint8_t roms[MAX_DEVICES][8];
//extern uint8_t devices_found ;
uint8_t _debug_init=1;
//TEMP temp_sense[30];
float set_temp_old[30];
char rx_buffer[64];
uint8_t rx_index = 0;
char command_ready = 0;
uint8_t uart_byte = 0;
uint8_t first_in=1;
DALLAS_SensorHandleTypeDef sens[30];
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM1_Init();
MX_USART1_UART_Init();
MX_TIM2_Init();
MX_ADC1_Init();
MX_CAN_Init();
MX_I2C1_Init();
MX_RTC_Init();
MX_SPI1_Init();
/* USER CODE BEGIN 2 */
led_blink(GPIOC,13,rest_iter,reset_blink_delay);
MODBUS_FirstInit();
uint8_t uart_byte = 0;
RS_Receive_IT(&hmodbus1, &MODBUS_MSG);
Dallas_BusFirstInit(&htim1);
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> (<28><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>)
for ( int i=0; i<hdallas.onewire->RomCnt;i++)
{
// <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> ROM-<2D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
//sens[i].Init.init_func = &Dallas_SensorInitByROM;
// sens[i].Init.InitParam.ROM = rom_address;
sens[i].Init.InitParam.Ind = i;
sens[i].Init.init_func = &Dallas_SensorInitByInd;
sens[i].Init.Resolution = DALLAS_CONFIG_9_BITS;
MB_DATA.HoldRegs.set_Temp[i] =sens[i].set_temp =20.;
MB_DATA.HoldRegs.set_hyst[i]=sens[i].hyst =1;
Dallas_AddNewSensors(&hdallas, &sens[i]);
}
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
if (_debug_init||MB_DATA.Coils.init_param)
{
_debug_init=0;
MB_DATA.Coils.init_param=0;
for(int i=0;i<hdallas.onewire->RomCnt;i++)
{
sens[i].set_temp=MB_DATA.HoldRegs.set_Temp[i];
sens[i].hyst=MB_DATA.HoldRegs.set_hyst[i];
}
// init_all_T_sense();
//DS18B20_Search(&DS, &OW);
}
Dallas_StartConvertTAll(&hdallas,DALLAS_WAIT_BUS,0);
for(int i=0;i<hdallas.onewire->RomCnt;i++)
{
if(sens[i].isLost)
{
sens[i].lost_cnt ++;
}
Dallas_ReadTemperature(&sens[i]);
sens[i].set_temp = MB_DATA.HoldRegs.set_Temp[i];
MB_DATA.InRegs.sens_Temp[i]=sens[i].temperature*10;
if (sens[i].temperature<sens[i].set_temp-sens[i].hyst)
{
MB_DATA.Coils.coils[0].all|=1<<i;
}
else
if (sens[i].temperature>sens[i].set_temp+sens[i].hyst)
{
MB_DATA.Coils.coils[0].all&=~(1<<i);
}
if(GPIOB11_valve)
{
GPIOB->ODR|=1<<11;
}
else
{
GPIOB->ODR&=~(1<<11);
}
}
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
//iwdg_refresh();
//HAL_Delay(200);
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.LSIState = RCC_LSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_ADC;
PeriphClkInit.RTCClockSelection = RCC_RTCCLKSOURCE_LSI;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void iwdg_refresh(void)
{
IWDG->KR = 0xAAAA; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
}
void led_blink(GPIO_TypeDef *GPIOx,uint16_t GPIO_Pin,uint8_t iter,uint16_t delay)
{
for(int i=0;i<iter;i++)
{
GPIOx->ODR^=(1<<GPIO_Pin);
HAL_Delay(delay);
}
}
//void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
//{
// if (huart->Instance == USART1)
// {
// if(first_in)
// {
// first_in=0;
// rx_index = 0;
//
// }
//
//
//
// static uint8_t ch;
// HAL_UART_Receive_IT(&huart1, &ch, 1);
// if (ch == '\r' || ch == '\n')
// {
// rx_buffer[rx_index] = 0;
// command_ready = 1;
// rx_index = 0;
// first_in=1;
//
// }
// else
// {
// if (rx_index < sizeof(rx_buffer) - 1)
// {
// rx_buffer[rx_index++] = ch;
// }
// }
// }
//}
//uint16_t handle_valves(TEMP* tmp_sense )
//{
//
// if (temp_sense[0].state==STATE_OPEN_VALVE)
// {
// GPIOC->ODR|=1<<14;
// }
// else
// if (temp_sense[0].state==STATE_CLOSE_VALVE)
// {
// GPIOC->ODR&=~(1<<14);
// }
//
// return 1;
//
//}
//void init_all_T_sense(void)
//{
// //ds_search_devices();
// for(int i=0;i<hdallas.onewire->RomCnt;i++)
//{
// temp_sense[i].id[0]=roms[i][0]<<0|roms[i][1]<<8|roms[i][2]<<16|roms[i][3]<<24;
// temp_sense[i].id[1]=roms[i][4]<<0|roms[i][5]<<8|roms[i][6]<<16|roms[i][7]<<24;
// temp_sense[i].count =i+1;
// temp_sense[i].location=1;
// temp_sense[i].t_open=22;
// temp_sense[i].t_close=18;
// temp_sense[i].status_T_sense=1;
//}
//}
/* USER CODE END 4 */
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM3 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
/* USER CODE END Callback 0 */
if (htim->Instance == TIM3) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */