UKSS_ICE/v120/DSP2833x_examples/flash/Example_2833xFlash.c
nelolik b8a0477c5c init commit.
Проект каким он достался от Димы.
2021-02-15 09:56:27 +03:00

343 lines
12 KiB
C

// TI File $Revision: /main/10 $
// Checkin $Date: April 21, 2008 15:42:33 $
//###########################################################################
//
// FILE: Example_2833xFlash.c
//
// TITLE: DSP2833x ePWM Timer Interrupt From Flash Example.
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// As supplied, this project is configured for "boot to FLASH"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash <- "boot to Flash"
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This example runs the ePWM interrupt example from flash.
//
// 1) Build the project
// 2) Flash the .out file into the device.
// 3) Set the hardware jumpers to boot to Flash
// 4) Use the included GEL file to load the project, symbols
// defined within the project and the variables into the watch
// window.
//
// Steps that were taken to convert the ePWM example from RAM
// to Flash execution:
//
// - Change the linker cmd file to reflect the flash memory map.
// - Make sure any initialized sections are mapped to Flash.
// In SDFlash utility this can be checked by the View->Coff/Hex
// status utility. Any section marked as "load" should be
// allocated to Flash.
// - Make sure there is a branch instruction from the entry to Flash
// at 0x33FFF6 to the beginning of code execution. This example
// uses the DSP2833x_CodeStartBranch.asm file to accomplish this.
// - Set boot mode Jumpers to "boot to Flash"
// - For best performance from the flash, modify the waitstates
// and enable the flash pipeline as shown in this example.
// Note: any code that manipulates the flash waitstate and pipeline
// control must be run from RAM. Thus these functions are located
// in their own memory section called ramfuncs.
//
//
// ePwm1 Interrupt will run from RAM and puts the flash into sleep mode
// ePwm2 Interrupt will run from RAM and puts the flash into standby mode
// ePWM3 Interrupt will run from FLASH
//
// As supplied:
//
// All timers have the same period
// The timers are started sync'ed
// An interrupt is taken on a zero event for each ePWM timer
//
// ePWM1: takes an interrupt every event
// ePWM2: takes an interrupt every 2nd event
// ePWM3: takes an interrupt every 3rd event
//
// Thus the Interrupt count for ePWM1, ePWM4-ePWM6 should be equal
// The interrupt count for ePWM2 should be about half that of ePWM1
// and the interrupt count for ePWM3 should be about 1/3 that of ePWM1
//
// Watch Variables:
// EPwm1TimerIntCount
// EPwm2TimerIntCount
// EPwm3TimerIntCount
//
// Toggle GPIO32 while in the background loop.
//
//###########################################################################
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
// Configure which ePWM timer interrupts are enabled at the PIE level:
// 1 = enabled, 0 = disabled
#define PWM1_INT_ENABLE 1
#define PWM2_INT_ENABLE 1
#define PWM3_INT_ENABLE 1
// Configure the period for each timer
#define PWM1_TIMER_TBPRD 0x1FFF
#define PWM2_TIMER_TBPRD 0x1FFF
#define PWM3_TIMER_TBPRD 0x1FFF
// Make this long enough so that we can see an LED toggle
#define DELAY 1000000L
// Functions that will be run from RAM need to be assigned to
// a different section. This section will then be mapped using
// the linker cmd file.
#pragma CODE_SECTION(epwm1_timer_isr, "ramfuncs");
#pragma CODE_SECTION(epwm2_timer_isr, "ramfuncs");
// Prototype statements for functions found within this file.
interrupt void epwm1_timer_isr(void);
interrupt void epwm2_timer_isr(void);
interrupt void epwm3_timer_isr(void);
void InitEPwmTimer(void);
// Global variables used in this example
Uint32 EPwm1TimerIntCount;
Uint32 EPwm2TimerIntCount;
Uint32 EPwm3TimerIntCount;
Uint32 LoopCount;
// These are defined by the linker (see F28335.cmd)
extern Uint16 RamfuncsLoadStart;
extern Uint16 RamfuncsLoadEnd;
extern Uint16 RamfuncsRunStart;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.EPWM1_INT = &epwm1_timer_isr;
PieVectTable.EPWM2_INT = &epwm2_timer_isr;
PieVectTable.EPWM3_INT = &epwm3_timer_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitEPwmTimer(); // For this example, only initialize the ePWM Timers
// Step 5. User specific code, enable interrupts:
// Copy time critical code and Flash setup code to RAM
// This includes the following ISR functions: epwm1_timer_isr(), epwm2_timer_isr()
// epwm3_timer_isr and and InitFlash();
// The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart
// symbols are created by the linker. Refer to the F28335.cmd file.
MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);
// Call Flash Initialization to setup flash waitstates
// This function must reside in RAM
InitFlash();
// Initalize counters:
EPwm1TimerIntCount = 0;
EPwm2TimerIntCount = 0;
EPwm3TimerIntCount = 0;
LoopCount = 0;
// Enable CPU INT3 which is connected to EPWM1-3 INT:
IER |= M_INT3;
// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
PieCtrlRegs.PIEIER3.bit.INTx1 = PWM1_INT_ENABLE;
PieCtrlRegs.PIEIER3.bit.INTx2 = PWM2_INT_ENABLE;
PieCtrlRegs.PIEIER3.bit.INTx3 = PWM3_INT_ENABLE;
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
// Step 6. IDLE loop. Just sit and loop forever (optional):
EALLOW;
GpioCtrlRegs.GPBMUX1.bit.GPIO32 = 0;
GpioCtrlRegs.GPBDIR.bit.GPIO32 = 1;
EDIS;
for(;;)
{
// This loop will be interrupted, so the overall
// delay between pin toggles will be longer.
DELAY_US(DELAY);
LoopCount++;
GpioDataRegs.GPBTOGGLE.bit.GPIO32 = 1;
}
}
void InitEPwmTimer()
{
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; // Stop all the TB clocks
EDIS;
// Setup Sync
EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // Pass through
EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // Pass through
EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // Pass through
// Allow each timer to be sync'ed
EPwm1Regs.TBCTL.bit.PHSEN = TB_ENABLE;
EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE;
EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE;
EPwm1Regs.TBPHS.half.TBPHS = 100;
EPwm2Regs.TBPHS.half.TBPHS = 200;
EPwm3Regs.TBPHS.half.TBPHS = 300;
EPwm1Regs.TBPRD = PWM1_TIMER_TBPRD;
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
EPwm1Regs.ETSEL.bit.INTEN = PWM1_INT_ENABLE; // Enable INT
EPwm1Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 1st event
EPwm2Regs.TBPRD = PWM2_TIMER_TBPRD;
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Enable INT on Zero event
EPwm2Regs.ETSEL.bit.INTEN = PWM2_INT_ENABLE; // Enable INT
EPwm2Regs.ETPS.bit.INTPRD = ET_2ND; // Generate INT on 2nd event
EPwm3Regs.TBPRD = PWM3_TIMER_TBPRD;
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Enable INT on Zero event
EPwm3Regs.ETSEL.bit.INTEN = PWM3_INT_ENABLE; // Enable INT
EPwm3Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; // Start all the timers synced
EDIS;
}
// This ISR MUST be executed from RAM as it will put the Flash into Sleep
// Interrupt routines uses in this example:
interrupt void epwm1_timer_isr(void)
{
// Put the Flash to sleep
FlashRegs.FPWR.bit.PWR = FLASH_SLEEP;
EPwm1TimerIntCount++;
// Clear INT flag for this timer
EPwm1Regs.ETCLR.bit.INT = 1;
// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
// This ISR MUST be executed from RAM as it will put the Flash into Standby
interrupt void epwm2_timer_isr(void)
{
EPwm2TimerIntCount++;
// Put the Flash into standby
FlashRegs.FPWR.bit.PWR = FLASH_STANDBY;
// Clear INT flag for this timer
EPwm2Regs.ETCLR.bit.INT = 1;
// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
interrupt void epwm3_timer_isr(void)
{
Uint16 i;
EPwm3TimerIntCount++;
// Short Delay to simulate some ISR Code
for(i = 1; i < 0x01FF; i++) {}
// Clear INT flag for this timer
EPwm3Regs.ETCLR.bit.INT = 1;
// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
//===========================================================================
// No more.
//===========================================================================