261 lines
9.3 KiB
C
261 lines
9.3 KiB
C
// TI File $Revision: /main/10 $
|
|
// Checkin $Date: May 5, 2008 15:25:49 $
|
|
//###########################################################################
|
|
//
|
|
// FILE: Example_2833xExternalInterrupt.c
|
|
//
|
|
// TITLE: DSP2833x External Interrupt test program.
|
|
//
|
|
// ASSUMPTIONS:
|
|
//
|
|
// This program requires the DSP2833x header files.
|
|
// As supplied, this project is configured for "boot to SARAM" operation.
|
|
//
|
|
// Connect GPIO30 to GPIO0. GPIO0 will be assigned to Xint1
|
|
// Connect GPIO31 to GPIO1. GPIO1 will be assigned to XINT2
|
|
//
|
|
// Monitor GPIO34 with an oscilloscope. GPIO34 will be high outside of the
|
|
// ISRs and low within each ISR.
|
|
//
|
|
// As supplied, this project is configured for "boot to SARAM"
|
|
// operation. The 2833x Boot Mode table is shown below.
|
|
// For information on configuring the boot mode of an eZdsp,
|
|
// please refer to the documentation included with the eZdsp,
|
|
//
|
|
// $Boot_Table:
|
|
//
|
|
// GPIO87 GPIO86 GPIO85 GPIO84
|
|
// XA15 XA14 XA13 XA12
|
|
// PU PU PU PU
|
|
// ==========================================
|
|
// 1 1 1 1 Jump to Flash
|
|
// 1 1 1 0 SCI-A boot
|
|
// 1 1 0 1 SPI-A boot
|
|
// 1 1 0 0 I2C-A boot
|
|
// 1 0 1 1 eCAN-A boot
|
|
// 1 0 1 0 McBSP-A boot
|
|
// 1 0 0 1 Jump to XINTF x16
|
|
// 1 0 0 0 Jump to XINTF x32
|
|
// 0 1 1 1 Jump to OTP
|
|
// 0 1 1 0 Parallel GPIO I/O boot
|
|
// 0 1 0 1 Parallel XINTF boot
|
|
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
|
|
// 0 0 1 1 Branch to check boot mode
|
|
// 0 0 1 0 Boot to flash, bypass ADC cal
|
|
// 0 0 0 1 Boot to SARAM, bypass ADC cal
|
|
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
|
|
// Boot_Table_End$
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// This program sets up GPIO0 as Xint1 and GPIO1 as XINT2. Two other
|
|
// GPIO signals are used to trigger the interrupt (GPIO30 triggers
|
|
// Xint1 and GPIO31 triggers XINT2). The user is required to
|
|
// externally connect these signals for the program to work
|
|
// properly.
|
|
//
|
|
// Xint1 input is synched to SYSCLKOUT
|
|
// XINT2 has a long qualification - 6 samples at 510*SYSCLKOUT each.
|
|
//
|
|
// GPIO34 will go high outside of the interrupts and low within the
|
|
// interrupts. This signal can be monitored on a scope.
|
|
//
|
|
// Each interrupt is fired in sequence - Xint1 first and then XINT2
|
|
//
|
|
//
|
|
// Watch Variables:
|
|
// Xint1Count for the number of times through Xint1 interrupt
|
|
// Xint2Count for the number of times through XINT2 interrupt
|
|
// LoopCount for the number of times through the idle loop
|
|
//
|
|
//###########################################################################
|
|
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
|
|
// $Release Date: August 1, 2008 $
|
|
//###########################################################################
|
|
|
|
|
|
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
|
|
|
|
// Prototype statements for functions found within this file.
|
|
interrupt void xint1_isr(void);
|
|
interrupt void xint2_isr(void);
|
|
|
|
// Global variables for this example
|
|
volatile Uint32 Xint1Count;
|
|
volatile Uint32 Xint2Count;
|
|
Uint32 LoopCount;
|
|
|
|
#define DELAY 35.700L
|
|
|
|
void main(void)
|
|
{
|
|
Uint32 TempX1Count;
|
|
Uint32 TempX2Count;
|
|
|
|
// Step 1. Initialize System Control:
|
|
// PLL, WatchDog, enable Peripheral Clocks
|
|
// This example function is found in the DSP2833x_SysCtrl.c file.
|
|
InitSysCtrl();
|
|
|
|
// Step 2. Initalize GPIO:
|
|
// This example function is found in the DSP2833x_Gpio.c file and
|
|
// illustrates how to set the GPIO to it's default state.
|
|
// InitGpio(); // Skipped for this example
|
|
|
|
// Step 3. Clear all interrupts and initialize PIE vector table:
|
|
// Disable CPU interrupts
|
|
DINT;
|
|
|
|
// Initialize PIE control registers to their default state.
|
|
// The default state is all PIE interrupts disabled and flags
|
|
// are cleared.
|
|
// This function is found in the DSP2833x_PieCtrl.c file.
|
|
InitPieCtrl();
|
|
|
|
// Disable CPU interrupts and clear all CPU interrupt flags:
|
|
IER = 0x0000;
|
|
IFR = 0x0000;
|
|
|
|
// Initialize the PIE vector table with pointers to the shell Interrupt
|
|
// Service Routines (ISR).
|
|
// This will populate the entire table, even if the interrupt
|
|
// is not used in this example. This is useful for debug purposes.
|
|
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
|
|
// This function is found in DSP2833x_PieVect.c.
|
|
InitPieVectTable();
|
|
|
|
// Interrupts that are used in this example are re-mapped to
|
|
// ISR functions found within this file.
|
|
EALLOW; // This is needed to write to EALLOW protected registers
|
|
PieVectTable.XINT1 = &xint1_isr;
|
|
PieVectTable.XINT2 = &xint2_isr;
|
|
EDIS; // This is needed to disable write to EALLOW protected registers
|
|
|
|
// Step 4. Initialize all the Device Peripherals:
|
|
// This function is found in DSP2833x_InitPeripherals.c
|
|
// InitPeripherals(); // Not required for this example
|
|
|
|
// Step 5. User specific code, enable interrupts:
|
|
|
|
// Clear the counters
|
|
Xint1Count = 0; // Count Xint1 interrupts
|
|
Xint2Count = 0; // Count XINT2 interrupts
|
|
LoopCount = 0; // Count times through idle loop
|
|
|
|
// Enable Xint1 and XINT2 in the PIE: Group 1 interrupt 4 & 5
|
|
// Enable int1 which is connected to WAKEINT:
|
|
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block
|
|
PieCtrlRegs.PIEIER1.bit.INTx4 = 1; // Enable PIE Gropu 1 INT4
|
|
PieCtrlRegs.PIEIER1.bit.INTx5 = 1; // Enable PIE Gropu 1 INT5
|
|
IER |= M_INT1; // Enable CPU int1
|
|
EINT; // Enable Global Interrupts
|
|
|
|
// GPIO30 & GPIO31 are outputs, start GPIO30 high and GPIO31 low
|
|
EALLOW;
|
|
GpioDataRegs.GPASET.bit.GPIO30 = 1; // Load the output latch
|
|
GpioCtrlRegs.GPAMUX2.bit.GPIO30 = 0; // GPIO
|
|
GpioCtrlRegs.GPADIR.bit.GPIO30 = 1; // output
|
|
|
|
GpioDataRegs.GPACLEAR.bit.GPIO31 = 1; // Load the output latch
|
|
GpioCtrlRegs.GPAMUX2.bit.GPIO31 = 0; // GPIO
|
|
GpioCtrlRegs.GPADIR.bit.GPIO31 = 1; // output
|
|
EDIS;
|
|
|
|
// GPIO0 and GPIO1 are inputs
|
|
EALLOW;
|
|
GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 0; // GPIO
|
|
GpioCtrlRegs.GPADIR.bit.GPIO0 = 0; // input
|
|
GpioCtrlRegs.GPAQSEL1.bit.GPIO0 = 0; // Xint1 Synch to SYSCLKOUT only
|
|
|
|
GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 0; // GPIO
|
|
GpioCtrlRegs.GPADIR.bit.GPIO1 = 0; // input
|
|
GpioCtrlRegs.GPAQSEL1.bit.GPIO1 = 2; // XINT2 Qual using 6 samples
|
|
GpioCtrlRegs.GPACTRL.bit.QUALPRD0 = 0xFF; // Each sampling window is 510*SYSCLKOUT
|
|
EDIS;
|
|
|
|
// GPIO0 is XINT1, GPIO1 is XINT2
|
|
EALLOW;
|
|
GpioIntRegs.GPIOXINT1SEL.bit.GPIOSEL = 0; // Xint1 is GPIO0
|
|
GpioIntRegs.GPIOXINT2SEL.bit.GPIOSEL = 1; // XINT2 is GPIO1
|
|
EDIS;
|
|
|
|
// Configure XINT1
|
|
XIntruptRegs.XINT1CR.bit.POLARITY = 0; // Falling edge interrupt
|
|
XIntruptRegs.XINT2CR.bit.POLARITY = 1; // Rising edge interrupt
|
|
|
|
// Enable XINT1 and XINT2
|
|
XIntruptRegs.XINT1CR.bit.ENABLE = 1; // Enable Xint1
|
|
XIntruptRegs.XINT2CR.bit.ENABLE = 1; // Enable XINT2
|
|
|
|
|
|
// GPIO34 will go low inside each interrupt. Monitor this on a scope
|
|
EALLOW;
|
|
GpioCtrlRegs.GPBMUX1.bit.GPIO34 = 0; // GPIO
|
|
GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1; // output
|
|
EDIS;
|
|
|
|
// Step 6. IDLE loop:
|
|
for(;;)
|
|
{
|
|
|
|
TempX1Count = Xint1Count;
|
|
TempX2Count = Xint2Count;
|
|
|
|
// Trigger both XINT1
|
|
GpioDataRegs.GPBSET.bit.GPIO34 = 1; // GPIO34 is high
|
|
GpioDataRegs.GPACLEAR.bit.GPIO30 = 1; // Lower GPIO30, trigger Xint1
|
|
while(Xint1Count == TempX1Count) {}
|
|
|
|
// Trigger both XINT2
|
|
|
|
GpioDataRegs.GPBSET.bit.GPIO34 = 1; // GPIO34 is high
|
|
DELAY_US(DELAY); // Wait for Qual period
|
|
GpioDataRegs.GPASET.bit.GPIO31 = 1; // Raise GPIO31, trigger XINT2
|
|
while(Xint2Count == TempX2Count) {}
|
|
|
|
// Check that the counts were incremented properly and get ready
|
|
// to start over.
|
|
if(Xint1Count == TempX1Count+1 && Xint2Count == TempX2Count+1)
|
|
{
|
|
LoopCount++;
|
|
GpioDataRegs.GPASET.bit.GPIO30 = 1; // raise GPIO30
|
|
GpioDataRegs.GPACLEAR.bit.GPIO31 = 1; // lower GPIO31
|
|
}
|
|
else
|
|
{
|
|
asm(" ESTOP0"); // stop here
|
|
}
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
// Step 7. Insert all local Interrupt Service Routines (ISRs) and functions here:
|
|
// If local ISRs are used, reassign vector addresses in vector table as
|
|
// shown in Step 5
|
|
|
|
interrupt void xint1_isr(void)
|
|
{
|
|
GpioDataRegs.GPBCLEAR.all = 0x4; // GPIO34 is low
|
|
Xint1Count++;
|
|
|
|
// Acknowledge this interrupt to get more from group 1
|
|
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
|
|
}
|
|
|
|
interrupt void xint2_isr(void)
|
|
{
|
|
GpioDataRegs.GPBCLEAR.all = 0x4; // GPIO34 is low
|
|
Xint2Count++;
|
|
|
|
// Acknowledge this interrupt to get more from group 1
|
|
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
|
|
}
|
|
|
|
|
|
//===========================================================================
|
|
// No more.
|
|
//===========================================================================
|