491 lines
16 KiB
C
491 lines
16 KiB
C
// TI File $Revision: /main/9 $
|
|
// Checkin $Date: April 21, 2008 15:41:47 $
|
|
//###########################################################################
|
|
//
|
|
// FILE: Example_2833xEPwm3UpAQ.c
|
|
//
|
|
// TITLE: Action Qualifier Module Upcount mode.
|
|
//
|
|
// ASSUMPTIONS:
|
|
//
|
|
// This program requires the DSP2833x header files.
|
|
//
|
|
// Monitor the ePWM1 - ePWM3 pins on a oscilloscope as
|
|
// described below.
|
|
//
|
|
// EPWM1A is on GPIO0
|
|
// EPWM1B is on GPIO1
|
|
//
|
|
// EPWM2A is on GPIO2
|
|
// EPWM2B is on GPIO3
|
|
//
|
|
// EPWM3A is on GPIO4
|
|
// EPWM3B is on GPIO5
|
|
//
|
|
// As supplied, this project is configured for "boot to SARAM"
|
|
// operation. The 2833x Boot Mode table is shown below.
|
|
// For information on configuring the boot mode of an eZdsp,
|
|
// please refer to the documentation included with the eZdsp,
|
|
//
|
|
// $Boot_Table:
|
|
//
|
|
// GPIO87 GPIO86 GPIO85 GPIO84
|
|
// XA15 XA14 XA13 XA12
|
|
// PU PU PU PU
|
|
// ==========================================
|
|
// 1 1 1 1 Jump to Flash
|
|
// 1 1 1 0 SCI-A boot
|
|
// 1 1 0 1 SPI-A boot
|
|
// 1 1 0 0 I2C-A boot
|
|
// 1 0 1 1 eCAN-A boot
|
|
// 1 0 1 0 McBSP-A boot
|
|
// 1 0 0 1 Jump to XINTF x16
|
|
// 1 0 0 0 Jump to XINTF x32
|
|
// 0 1 1 1 Jump to OTP
|
|
// 0 1 1 0 Parallel GPIO I/O boot
|
|
// 0 1 0 1 Parallel XINTF boot
|
|
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
|
|
// 0 0 1 1 Branch to check boot mode
|
|
// 0 0 1 0 Boot to flash, bypass ADC cal
|
|
// 0 0 0 1 Boot to SARAM, bypass ADC cal
|
|
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
|
|
// Boot_Table_End$
|
|
//
|
|
// DESCRIPTION:
|
|
//
|
|
// This example configures ePWM1, ePWM2, ePWM3 to produce an
|
|
// waveform with independant modulation on EPWMxA and
|
|
// EPWMxB.
|
|
//
|
|
// The compare values CMPA and CMPB are modified within the ePWM's ISR
|
|
//
|
|
// The TB counter is in upmode for this example.
|
|
//
|
|
// View the EPWM1A/B, EPWM2A/B and EPWM3A/B waveforms
|
|
// via an oscilloscope
|
|
//
|
|
//
|
|
//###########################################################################
|
|
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
|
|
// $Release Date: August 1, 2008 $
|
|
//###########################################################################
|
|
|
|
|
|
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
|
|
|
|
|
|
typedef struct
|
|
{
|
|
volatile struct EPWM_REGS *EPwmRegHandle;
|
|
Uint16 EPwm_CMPA_Direction;
|
|
Uint16 EPwm_CMPB_Direction;
|
|
Uint16 EPwmTimerIntCount;
|
|
Uint16 EPwmMaxCMPA;
|
|
Uint16 EPwmMinCMPA;
|
|
Uint16 EPwmMaxCMPB;
|
|
Uint16 EPwmMinCMPB;
|
|
}EPWM_INFO;
|
|
|
|
|
|
// Prototype statements for functions found within this file.
|
|
void InitEPwm1Example(void);
|
|
void InitEPwm2Example(void);
|
|
void InitEPwm3Example(void);
|
|
interrupt void epwm1_isr(void);
|
|
interrupt void epwm2_isr(void);
|
|
interrupt void epwm3_isr(void);
|
|
void update_compare(EPWM_INFO*);
|
|
|
|
// Global variables used in this example
|
|
EPWM_INFO epwm1_info;
|
|
EPWM_INFO epwm2_info;
|
|
EPWM_INFO epwm3_info;
|
|
|
|
// Configure the period for each timer
|
|
#define EPWM1_TIMER_TBPRD 2000 // Period register
|
|
#define EPWM1_MAX_CMPA 1950
|
|
#define EPWM1_MIN_CMPA 50
|
|
#define EPWM1_MAX_CMPB 1950
|
|
#define EPWM1_MIN_CMPB 50
|
|
|
|
#define EPWM2_TIMER_TBPRD 2000 // Period register
|
|
#define EPWM2_MAX_CMPA 1950
|
|
#define EPWM2_MIN_CMPA 50
|
|
#define EPWM2_MAX_CMPB 1950
|
|
#define EPWM2_MIN_CMPB 50
|
|
|
|
#define EPWM3_TIMER_TBPRD 2000 // Period register
|
|
#define EPWM3_MAX_CMPA 950
|
|
#define EPWM3_MIN_CMPA 50
|
|
#define EPWM3_MAX_CMPB 1950
|
|
#define EPWM3_MIN_CMPB 1050
|
|
|
|
|
|
// To keep track of which way the compare value is moving
|
|
#define EPWM_CMP_UP 1
|
|
#define EPWM_CMP_DOWN 0
|
|
|
|
|
|
|
|
void main(void)
|
|
{
|
|
// Step 1. Initialize System Control:
|
|
// PLL, WatchDog, enable Peripheral Clocks
|
|
// This example function is found in the DSP2833x_SysCtrl.c file.
|
|
InitSysCtrl();
|
|
|
|
// Step 2. Initalize GPIO:
|
|
// This example function is found in the DSP2833x_Gpio.c file and
|
|
// illustrates how to set the GPIO to it's default state.
|
|
// InitGpio(); // Skipped for this example
|
|
|
|
// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3
|
|
// These functions are in the DSP2833x_EPwm.c file
|
|
InitEPwm1Gpio();
|
|
InitEPwm2Gpio();
|
|
InitEPwm3Gpio();
|
|
|
|
|
|
// Step 3. Clear all interrupts and initialize PIE vector table:
|
|
// Disable CPU interrupts
|
|
DINT;
|
|
|
|
// Initialize the PIE control registers to their default state.
|
|
// The default state is all PIE interrupts disabled and flags
|
|
// are cleared.
|
|
// This function is found in the DSP2833x_PieCtrl.c file.
|
|
InitPieCtrl();
|
|
|
|
// Disable CPU interrupts and clear all CPU interrupt flags:
|
|
IER = 0x0000;
|
|
IFR = 0x0000;
|
|
|
|
// Initialize the PIE vector table with pointers to the shell Interrupt
|
|
// Service Routines (ISR).
|
|
// This will populate the entire table, even if the interrupt
|
|
// is not used in this example. This is useful for debug purposes.
|
|
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
|
|
// This function is found in DSP2833x_PieVect.c.
|
|
InitPieVectTable();
|
|
|
|
// Interrupts that are used in this example are re-mapped to
|
|
// ISR functions found within this file.
|
|
EALLOW; // This is needed to write to EALLOW protected registers
|
|
PieVectTable.EPWM1_INT = &epwm1_isr;
|
|
PieVectTable.EPWM2_INT = &epwm2_isr;
|
|
PieVectTable.EPWM3_INT = &epwm3_isr;
|
|
EDIS; // This is needed to disable write to EALLOW protected registers
|
|
|
|
// Step 4. Initialize all the Device Peripherals:
|
|
// This function is found in DSP2833x_InitPeripherals.c
|
|
// InitPeripherals(); // Not required for this example
|
|
|
|
// For this example, only initialize the ePWM
|
|
|
|
EALLOW;
|
|
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
|
|
EDIS;
|
|
|
|
InitEPwm1Example();
|
|
InitEPwm2Example();
|
|
InitEPwm3Example();
|
|
|
|
EALLOW;
|
|
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
|
|
EDIS;
|
|
|
|
|
|
// Step 5. User specific code, enable interrupts:
|
|
|
|
// Enable CPU INT3 which is connected to EPWM1-3 INT:
|
|
IER |= M_INT3;
|
|
|
|
// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
|
|
PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
|
|
PieCtrlRegs.PIEIER3.bit.INTx2 = 1;
|
|
PieCtrlRegs.PIEIER3.bit.INTx3 = 1;
|
|
|
|
// Enable global Interrupts and higher priority real-time debug events:
|
|
EINT; // Enable Global interrupt INTM
|
|
ERTM; // Enable Global realtime interrupt DBGM
|
|
|
|
// Step 6. IDLE loop. Just sit and loop forever (optional):
|
|
for(;;)
|
|
{
|
|
asm(" NOP");
|
|
}
|
|
|
|
}
|
|
|
|
interrupt void epwm1_isr(void)
|
|
{
|
|
// Update the CMPA and CMPB values
|
|
update_compare(&epwm1_info);
|
|
|
|
// Clear INT flag for this timer
|
|
EPwm1Regs.ETCLR.bit.INT = 1;
|
|
|
|
// Acknowledge this interrupt to receive more interrupts from group 3
|
|
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
|
|
}
|
|
|
|
|
|
interrupt void epwm2_isr(void)
|
|
{
|
|
|
|
// Update the CMPA and CMPB values
|
|
update_compare(&epwm2_info);
|
|
|
|
// Clear INT flag for this timer
|
|
EPwm2Regs.ETCLR.bit.INT = 1;
|
|
|
|
// Acknowledge this interrupt to receive more interrupts from group 3
|
|
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
|
|
}
|
|
|
|
interrupt void epwm3_isr(void)
|
|
{
|
|
|
|
// Update the CMPA and CMPB values
|
|
update_compare(&epwm3_info);
|
|
|
|
// Clear INT flag for this timer
|
|
EPwm3Regs.ETCLR.bit.INT = 1;
|
|
|
|
// Acknowledge this interrupt to receive more interrupts from group 3
|
|
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
|
|
}
|
|
|
|
void InitEPwm1Example()
|
|
{
|
|
|
|
// Setup TBCLK
|
|
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
|
|
EPwm1Regs.TBPRD = EPWM1_TIMER_TBPRD; // Set timer period
|
|
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
|
|
EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
|
|
EPwm1Regs.TBCTR = 0x0000; // Clear counter
|
|
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2; // Clock ratio to SYSCLKOUT
|
|
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV2;
|
|
|
|
// Setup shadow register load on ZERO
|
|
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
|
|
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
|
|
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
|
|
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
|
|
|
|
// Set Compare values
|
|
EPwm1Regs.CMPA.half.CMPA = EPWM1_MIN_CMPA; // Set compare A value
|
|
EPwm1Regs.CMPB = EPWM1_MIN_CMPB; // Set Compare B value
|
|
|
|
// Set actions
|
|
EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET; // Set PWM1A on Zero
|
|
EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR; // Clear PWM1A on event A, up count
|
|
|
|
EPwm1Regs.AQCTLB.bit.ZRO = AQ_SET; // Set PWM1B on Zero
|
|
EPwm1Regs.AQCTLB.bit.CBU = AQ_CLEAR; // Clear PWM1B on event B, up count
|
|
|
|
// Interrupt where we will change the Compare Values
|
|
EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
|
|
EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT
|
|
EPwm1Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
|
|
|
|
// Information this example uses to keep track
|
|
// of the direction the CMPA/CMPB values are
|
|
// moving, the min and max allowed values and
|
|
// a pointer to the correct ePWM registers
|
|
epwm1_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing CMPA & CMPB
|
|
epwm1_info.EPwm_CMPB_Direction = EPWM_CMP_UP;
|
|
epwm1_info.EPwmTimerIntCount = 0; // Zero the interrupt counter
|
|
epwm1_info.EPwmRegHandle = &EPwm1Regs; // Set the pointer to the ePWM module
|
|
epwm1_info.EPwmMaxCMPA = EPWM1_MAX_CMPA; // Setup min/max CMPA/CMPB values
|
|
epwm1_info.EPwmMinCMPA = EPWM1_MIN_CMPA;
|
|
epwm1_info.EPwmMaxCMPB = EPWM1_MAX_CMPB;
|
|
epwm1_info.EPwmMinCMPB = EPWM1_MIN_CMPB;
|
|
|
|
}
|
|
|
|
|
|
void InitEPwm2Example()
|
|
{
|
|
// Setup TBCLK
|
|
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
|
|
EPwm2Regs.TBPRD = EPWM2_TIMER_TBPRD; // Set timer period
|
|
EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
|
|
EPwm2Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
|
|
EPwm2Regs.TBCTR = 0x0000; // Clear counter
|
|
EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2; // Clock ratio to SYSCLKOUT
|
|
EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV2;
|
|
|
|
// Setup shadow register load on ZERO
|
|
EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
|
|
EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
|
|
EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
|
|
EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
|
|
|
|
// Set Compare values
|
|
EPwm2Regs.CMPA.half.CMPA = EPWM2_MIN_CMPA; // Set compare A value
|
|
EPwm2Regs.CMPB = EPWM2_MAX_CMPB; // Set Compare B value
|
|
|
|
// Set actions
|
|
EPwm2Regs.AQCTLA.bit.PRD = AQ_CLEAR; // Clear PWM2A on Period
|
|
EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM2A on event A, up count
|
|
|
|
EPwm2Regs.AQCTLB.bit.PRD = AQ_CLEAR; // Clear PWM2B on Period
|
|
EPwm2Regs.AQCTLB.bit.CBU = AQ_SET; // Set PWM2B on event B, up count
|
|
|
|
// Interrupt where we will change the Compare Values
|
|
EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
|
|
EPwm2Regs.ETSEL.bit.INTEN = 1; // Enable INT
|
|
EPwm2Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
|
|
|
|
// Information this example uses to keep track
|
|
// of the direction the CMPA/CMPB values are
|
|
// moving, the min and max allowed values and
|
|
// a pointer to the correct ePWM registers
|
|
epwm2_info.EPwm_CMPA_Direction = EPWM_CMP_UP; // Start by increasing CMPA
|
|
epwm2_info.EPwm_CMPB_Direction = EPWM_CMP_DOWN; // and decreasing CMPB
|
|
epwm2_info.EPwmTimerIntCount = 0; // Zero the interrupt counter
|
|
epwm2_info.EPwmRegHandle = &EPwm2Regs; // Set the pointer to the ePWM module
|
|
epwm2_info.EPwmMaxCMPA = EPWM2_MAX_CMPA; // Setup min/max CMPA/CMPB values
|
|
epwm2_info.EPwmMinCMPA = EPWM2_MIN_CMPA;
|
|
epwm2_info.EPwmMaxCMPB = EPWM2_MAX_CMPB;
|
|
epwm2_info.EPwmMinCMPB = EPWM2_MIN_CMPB;
|
|
|
|
}
|
|
|
|
|
|
void InitEPwm3Example(void)
|
|
{
|
|
|
|
|
|
// Setup TBCLK
|
|
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up
|
|
EPwm3Regs.TBPRD = EPWM3_TIMER_TBPRD; // Set timer period
|
|
EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
|
|
EPwm3Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
|
|
EPwm3Regs.TBCTR = 0x0000; // Clear counter
|
|
EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT
|
|
EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;
|
|
|
|
// Setup shadow register load on ZERO
|
|
EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
|
|
EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
|
|
EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
|
|
EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
|
|
|
|
// Set Compare values
|
|
EPwm3Regs.CMPA.half.CMPA = EPWM3_MIN_CMPA; // Set compare A value
|
|
EPwm3Regs.CMPB = EPWM3_MAX_CMPB; // Set Compare B value
|
|
|
|
// Set Actions
|
|
EPwm3Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM3A on event B, up count
|
|
EPwm3Regs.AQCTLA.bit.CBU = AQ_CLEAR; // Clear PWM3A on event B, up count
|
|
|
|
EPwm3Regs.AQCTLB.bit.ZRO = AQ_TOGGLE; // Toggle EPWM3B on Zero
|
|
|
|
// Interrupt where we will change the Compare Values
|
|
EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
|
|
EPwm3Regs.ETSEL.bit.INTEN = 1; // Enable INT
|
|
EPwm3Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
|
|
|
|
// Start by increasing the compare A and decreasing compare B
|
|
epwm3_info.EPwm_CMPA_Direction = EPWM_CMP_UP;
|
|
epwm3_info.EPwm_CMPB_Direction = EPWM_CMP_DOWN;
|
|
// Start the cout at 0
|
|
epwm3_info.EPwmTimerIntCount = 0;
|
|
epwm3_info.EPwmRegHandle = &EPwm3Regs;
|
|
epwm3_info.EPwmMaxCMPA = EPWM3_MAX_CMPA;
|
|
epwm3_info.EPwmMinCMPA = EPWM3_MIN_CMPA;
|
|
epwm3_info.EPwmMaxCMPB = EPWM3_MAX_CMPB;
|
|
epwm3_info.EPwmMinCMPB = EPWM3_MIN_CMPB;
|
|
}
|
|
|
|
|
|
void update_compare(EPWM_INFO *epwm_info)
|
|
{
|
|
|
|
|
|
// Every 10'th interrupt, change the CMPA/CMPB values
|
|
if(epwm_info->EPwmTimerIntCount == 10)
|
|
{
|
|
epwm_info->EPwmTimerIntCount = 0;
|
|
|
|
// If we were increasing CMPA, check to see if
|
|
// we reached the max value. If not, increase CMPA
|
|
// else, change directions and decrease CMPA
|
|
if(epwm_info->EPwm_CMPA_Direction == EPWM_CMP_UP)
|
|
{
|
|
if(epwm_info->EPwmRegHandle->CMPA.half.CMPA < epwm_info->EPwmMaxCMPA)
|
|
{
|
|
epwm_info->EPwmRegHandle->CMPA.half.CMPA++;
|
|
}
|
|
else
|
|
{
|
|
epwm_info->EPwm_CMPA_Direction = EPWM_CMP_DOWN;
|
|
epwm_info->EPwmRegHandle->CMPA.half.CMPA--;
|
|
}
|
|
}
|
|
|
|
// If we were decreasing CMPA, check to see if
|
|
// we reached the min value. If not, decrease CMPA
|
|
// else, change directions and increase CMPA
|
|
else
|
|
{
|
|
if(epwm_info->EPwmRegHandle->CMPA.half.CMPA == epwm_info->EPwmMinCMPA)
|
|
{
|
|
epwm_info->EPwm_CMPA_Direction = EPWM_CMP_UP;
|
|
epwm_info->EPwmRegHandle->CMPA.half.CMPA++;
|
|
}
|
|
else
|
|
{
|
|
epwm_info->EPwmRegHandle->CMPA.half.CMPA--;
|
|
}
|
|
}
|
|
|
|
// If we were increasing CMPB, check to see if
|
|
// we reached the max value. If not, increase CMPB
|
|
// else, change directions and decrease CMPB
|
|
if(epwm_info->EPwm_CMPB_Direction == EPWM_CMP_UP)
|
|
{
|
|
if(epwm_info->EPwmRegHandle->CMPB < epwm_info->EPwmMaxCMPB)
|
|
{
|
|
epwm_info->EPwmRegHandle->CMPB++;
|
|
}
|
|
else
|
|
{
|
|
epwm_info->EPwm_CMPB_Direction = EPWM_CMP_DOWN;
|
|
epwm_info->EPwmRegHandle->CMPB--;
|
|
}
|
|
}
|
|
|
|
// If we were decreasing CMPB, check to see if
|
|
// we reached the min value. If not, decrease CMPB
|
|
// else, change directions and increase CMPB
|
|
|
|
else
|
|
{
|
|
if(epwm_info->EPwmRegHandle->CMPB == epwm_info->EPwmMinCMPB)
|
|
{
|
|
epwm_info->EPwm_CMPB_Direction = EPWM_CMP_UP;
|
|
epwm_info->EPwmRegHandle->CMPB++;
|
|
}
|
|
else
|
|
{
|
|
epwm_info->EPwmRegHandle->CMPB--;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
epwm_info->EPwmTimerIntCount++;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
//===========================================================================
|
|
// No more.
|
|
//===========================================================================
|