// TI File $Revision: /main/9 $ // Checkin $Date: April 21, 2008 15:43:32 $ //########################################################################### // // FILE: Example_2833xSpi_FFDLB.c // // TITLE: DSP2833x Device Spi Digital Loop Back program. // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // This program uses the internal loop back test mode of the peripheral. // Other then boot mode pin configuration, no other hardware configuration // is required. // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This program is a SPI example that uses the internal loopback of // the peripheral. Interrupts are not used. // // A stream of data is sent and then compared to the recieved stream. // // The sent data looks like this: // 0000 0001 0002 0003 0004 0005 0006 0007 .... FFFE FFFF // // This pattern is repeated forever. // // Watch Variables: // sdata - sent data // rdata - received data // ////########################################################################### // Original Author: S.S. // // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File // Prototype statements for functions found within this file. // interrupt void ISRTimer2(void); void delay_loop(void); void spi_xmit(Uint16 a); void spi_fifo_init(void); void spi_init(void); void error(void); void main(void) { Uint16 sdata; // send data Uint16 rdata; // received data // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Setup only the GP I/O only for SPI-A functionality // This function is found in DSP2833x_Spi.c InitSpiaGpio(); // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example spi_fifo_init(); // Initialize the Spi FIFO spi_init(); // init SPI // Step 5. User specific code: // Interrupts are not used in this example. sdata = 0x0000; for(;;) { // Transmit data spi_xmit(sdata); // Wait until data is received while(SpiaRegs.SPIFFRX.bit.RXFFST !=1) { } // Check against sent data rdata = SpiaRegs.SPIRXBUF; if(rdata != sdata) error(); sdata++; } } // Step 7. Insert all local Interrupt Service Routines (ISRs) and functions here: void delay_loop() { long i; for (i = 0; i < 1000000; i++) {} } void error(void) { asm(" ESTOP0"); // Test failed!! Stop! for (;;); } void spi_init() { SpiaRegs.SPICCR.all =0x000F; // Reset on, rising edge, 16-bit char bits SpiaRegs.SPICTL.all =0x0006; // Enable master mode, normal phase, // enable talk, and SPI int disabled. SpiaRegs.SPIBRR =0x007F; SpiaRegs.SPICCR.all =0x009F; // Relinquish SPI from Reset SpiaRegs.SPIPRI.bit.FREE = 1; // Set so breakpoints don't disturb xmission } void spi_xmit(Uint16 a) { SpiaRegs.SPITXBUF=a; } void spi_fifo_init() { // Initialize SPI FIFO registers SpiaRegs.SPIFFTX.all=0xE040; SpiaRegs.SPIFFRX.all=0x204f; SpiaRegs.SPIFFCT.all=0x0; } //=========================================================================== // No more. //===========================================================================