// TI File $Revision: /main/11 $ // Checkin $Date: June 19, 2008 17:08:04 $ //########################################################################### // // FILE: Example_2833xStandbyWake.c // // TITLE: Device Standby Mode and Wakeup Program. // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // GPIO0 is configured as the LPM wakeup pin to trigger a // WAKEINT interrupt upon detection of a low pulse. // Initially, pull GPIO0 high externally. To wake device // from standby mode, pull GPIO0 low for at least (2+QUALSTDBY) // OSCLKS, then pull it high again. // // To observe when device wakes from STANDBY mode, monitor // GPIO1 with an oscilloscope (set to 1 in WAKEINT ISR) // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This example puts the device into STANDBY mode. If the lowest // possible current consumption in STANDBY mode is desired, the // JTAG connector must be removed from the device board while // the device is in STANDBY mode. // // The example then wakes up the device from STANDBY using GPIO0. // GPIO0 wakes the device from STANDBY mode when a low pulse // (signal goes high->low->high)is detected on the pin. // This pin must be pulsed by an external agent for wakeup. // // As soon as GPIO0 goes high again after the pulse, the device // should wake up, and GPIO1 can be observed to toggle. // // //########################################################################### // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File // Prototype statements for functions found within this file. interrupt void WAKE_ISR(void); // ISR for WAKEINT void main() { // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example EALLOW; GpioCtrlRegs.GPAPUD.all = 0; // Enable all Pull-ups GpioCtrlRegs.GPBPUD.all = 0; GpioCtrlRegs.GPADIR.bit.GPIO1 = 1; // GPIO1 set in the ISR to indicate device woken up. GpioIntRegs.GPIOLPMSEL.bit.GPIO0 = 1; // Choose GPIO0 pin for wakeup EDIS; // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. EALLOW; // This is needed to write to EALLOW protected registers PieVectTable.WAKEINT = &WAKE_ISR; EDIS; // Step 4. Initialize all the Device Peripherals: // Not applicable for this example. // Step 5. User specific code, enable interrupts: // Enable CPU INT1 which is connected to WakeInt: IER |= M_INT1; // Enable WAKEINT in the PIE: Group 1 interrupt 8 PieCtrlRegs.PIEIER1.bit.INTx8 = 1; PieCtrlRegs.PIEACK.bit.ACK1 = 1; // Enable global Interrupts: EINT; // Enable Global interrupt INTM // Choose qualification cycles in LPMCR0 register SysCtrlRegs.LPMCR0.bit.QUALSTDBY = 0; // The wakeup signal should be (2+QUALSTDBY) OSCCLKs wide. // Write the LPM code value EALLOW; if (SysCtrlRegs.PLLSTS.bit.MCLKSTS != 1) // Only enter Standby mode when PLL is not in limp mode. { SysCtrlRegs.LPMCR0.bit.LPM = 0x0001; // LPM mode = Standby } EDIS; // Force device into STANDBY asm(" IDLE"); // Device waits in IDLE until falling edge on GPIO0/XNMI pin // wakes device from Standby mode. for(;;){} // Loop here after wake-up. } /* ----------------------------------------------- */ /* ISR for WAKEINT - Will be executed when */ /* low pulse triggered on GPIO0 pin */ /* ------------------------------------------------*/ interrupt void WAKE_ISR(void) { GpioDataRegs.GPATOGGLE.bit.GPIO1 = 1; // Toggle GPIO1 in the ISR - monitored with oscilloscope PieCtrlRegs.PIEACK.bit.ACK1 = 1; }