// TI File $Revision: /main/10 $ // Checkin $Date: April 21, 2008 15:42:33 $ //########################################################################### // // FILE: Example_2833xFlash.c // // TITLE: DSP2833x ePWM Timer Interrupt From Flash Example. // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // As supplied, this project is configured for "boot to FLASH" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash <- "boot to Flash" // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This example runs the ePWM interrupt example from flash. // // 1) Build the project // 2) Flash the .out file into the device. // 3) Set the hardware jumpers to boot to Flash // 4) Use the included GEL file to load the project, symbols // defined within the project and the variables into the watch // window. // // Steps that were taken to convert the ePWM example from RAM // to Flash execution: // // - Change the linker cmd file to reflect the flash memory map. // - Make sure any initialized sections are mapped to Flash. // In SDFlash utility this can be checked by the View->Coff/Hex // status utility. Any section marked as "load" should be // allocated to Flash. // - Make sure there is a branch instruction from the entry to Flash // at 0x33FFF6 to the beginning of code execution. This example // uses the DSP2833x_CodeStartBranch.asm file to accomplish this. // - Set boot mode Jumpers to "boot to Flash" // - For best performance from the flash, modify the waitstates // and enable the flash pipeline as shown in this example. // Note: any code that manipulates the flash waitstate and pipeline // control must be run from RAM. Thus these functions are located // in their own memory section called ramfuncs. // // // ePwm1 Interrupt will run from RAM and puts the flash into sleep mode // ePwm2 Interrupt will run from RAM and puts the flash into standby mode // ePWM3 Interrupt will run from FLASH // // As supplied: // // All timers have the same period // The timers are started sync'ed // An interrupt is taken on a zero event for each ePWM timer // // ePWM1: takes an interrupt every event // ePWM2: takes an interrupt every 2nd event // ePWM3: takes an interrupt every 3rd event // // Thus the Interrupt count for ePWM1, ePWM4-ePWM6 should be equal // The interrupt count for ePWM2 should be about half that of ePWM1 // and the interrupt count for ePWM3 should be about 1/3 that of ePWM1 // // Watch Variables: // EPwm1TimerIntCount // EPwm2TimerIntCount // EPwm3TimerIntCount // // Toggle GPIO32 while in the background loop. // //########################################################################### // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File // Configure which ePWM timer interrupts are enabled at the PIE level: // 1 = enabled, 0 = disabled #define PWM1_INT_ENABLE 1 #define PWM2_INT_ENABLE 1 #define PWM3_INT_ENABLE 1 // Configure the period for each timer #define PWM1_TIMER_TBPRD 0x1FFF #define PWM2_TIMER_TBPRD 0x1FFF #define PWM3_TIMER_TBPRD 0x1FFF // Make this long enough so that we can see an LED toggle #define DELAY 1000000L // Functions that will be run from RAM need to be assigned to // a different section. This section will then be mapped using // the linker cmd file. #pragma CODE_SECTION(epwm1_timer_isr, "ramfuncs"); #pragma CODE_SECTION(epwm2_timer_isr, "ramfuncs"); // Prototype statements for functions found within this file. interrupt void epwm1_timer_isr(void); interrupt void epwm2_timer_isr(void); interrupt void epwm3_timer_isr(void); void InitEPwmTimer(void); // Global variables used in this example Uint32 EPwm1TimerIntCount; Uint32 EPwm2TimerIntCount; Uint32 EPwm3TimerIntCount; Uint32 LoopCount; // These are defined by the linker (see F28335.cmd) extern Uint16 RamfuncsLoadStart; extern Uint16 RamfuncsLoadEnd; extern Uint16 RamfuncsRunStart; void main(void) { // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. EALLOW; // This is needed to write to EALLOW protected registers PieVectTable.EPWM1_INT = &epwm1_timer_isr; PieVectTable.EPWM2_INT = &epwm2_timer_isr; PieVectTable.EPWM3_INT = &epwm3_timer_isr; EDIS; // This is needed to disable write to EALLOW protected registers // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example InitEPwmTimer(); // For this example, only initialize the ePWM Timers // Step 5. User specific code, enable interrupts: // Copy time critical code and Flash setup code to RAM // This includes the following ISR functions: epwm1_timer_isr(), epwm2_timer_isr() // epwm3_timer_isr and and InitFlash(); // The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart // symbols are created by the linker. Refer to the F28335.cmd file. MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart); // Call Flash Initialization to setup flash waitstates // This function must reside in RAM InitFlash(); // Initalize counters: EPwm1TimerIntCount = 0; EPwm2TimerIntCount = 0; EPwm3TimerIntCount = 0; LoopCount = 0; // Enable CPU INT3 which is connected to EPWM1-3 INT: IER |= M_INT3; // Enable EPWM INTn in the PIE: Group 3 interrupt 1-3 PieCtrlRegs.PIEIER3.bit.INTx1 = PWM1_INT_ENABLE; PieCtrlRegs.PIEIER3.bit.INTx2 = PWM2_INT_ENABLE; PieCtrlRegs.PIEIER3.bit.INTx3 = PWM3_INT_ENABLE; // Enable global Interrupts and higher priority real-time debug events: EINT; // Enable Global interrupt INTM ERTM; // Enable Global realtime interrupt DBGM // Step 6. IDLE loop. Just sit and loop forever (optional): EALLOW; GpioCtrlRegs.GPBMUX1.bit.GPIO32 = 0; GpioCtrlRegs.GPBDIR.bit.GPIO32 = 1; EDIS; for(;;) { // This loop will be interrupted, so the overall // delay between pin toggles will be longer. DELAY_US(DELAY); LoopCount++; GpioDataRegs.GPBTOGGLE.bit.GPIO32 = 1; } } void InitEPwmTimer() { EALLOW; SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; // Stop all the TB clocks EDIS; // Setup Sync EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // Pass through EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // Pass through EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_IN; // Pass through // Allow each timer to be sync'ed EPwm1Regs.TBCTL.bit.PHSEN = TB_ENABLE; EPwm2Regs.TBCTL.bit.PHSEN = TB_ENABLE; EPwm3Regs.TBCTL.bit.PHSEN = TB_ENABLE; EPwm1Regs.TBPHS.half.TBPHS = 100; EPwm2Regs.TBPHS.half.TBPHS = 200; EPwm3Regs.TBPHS.half.TBPHS = 300; EPwm1Regs.TBPRD = PWM1_TIMER_TBPRD; EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event EPwm1Regs.ETSEL.bit.INTEN = PWM1_INT_ENABLE; // Enable INT EPwm1Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 1st event EPwm2Regs.TBPRD = PWM2_TIMER_TBPRD; EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Enable INT on Zero event EPwm2Regs.ETSEL.bit.INTEN = PWM2_INT_ENABLE; // Enable INT EPwm2Regs.ETPS.bit.INTPRD = ET_2ND; // Generate INT on 2nd event EPwm3Regs.TBPRD = PWM3_TIMER_TBPRD; EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP; // Count up EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Enable INT on Zero event EPwm3Regs.ETSEL.bit.INTEN = PWM3_INT_ENABLE; // Enable INT EPwm3Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event EALLOW; SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; // Start all the timers synced EDIS; } // This ISR MUST be executed from RAM as it will put the Flash into Sleep // Interrupt routines uses in this example: interrupt void epwm1_timer_isr(void) { // Put the Flash to sleep FlashRegs.FPWR.bit.PWR = FLASH_SLEEP; EPwm1TimerIntCount++; // Clear INT flag for this timer EPwm1Regs.ETCLR.bit.INT = 1; // Acknowledge this interrupt to receive more interrupts from group 3 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; } // This ISR MUST be executed from RAM as it will put the Flash into Standby interrupt void epwm2_timer_isr(void) { EPwm2TimerIntCount++; // Put the Flash into standby FlashRegs.FPWR.bit.PWR = FLASH_STANDBY; // Clear INT flag for this timer EPwm2Regs.ETCLR.bit.INT = 1; // Acknowledge this interrupt to receive more interrupts from group 3 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; } interrupt void epwm3_timer_isr(void) { Uint16 i; EPwm3TimerIntCount++; // Short Delay to simulate some ISR Code for(i = 1; i < 0x01FF; i++) {} // Clear INT flag for this timer EPwm3Regs.ETCLR.bit.INT = 1; // Acknowledge this interrupt to receive more interrupts from group 3 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; } //=========================================================================== // No more. //===========================================================================