// TI File $Revision: /main/12 $ // Checkin $Date: July 10, 2008 11:07:26 $ //########################################################################### // // FILE: Example_2833xEqep_freqcal.c // // TITLE: Frequency measurement using EQEP peripheral // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // As supplied, this project is configured for "boot to SARAM" operation. // // Test requires the following hardware connections // // GPIO20/EQEP1A <- External input - connect to GPIO0/EPWM1A // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This test will provide frequency measurement using capture unit (freqhz_pr) // and unit time out (freqhz_fr). The EPWM1A frequency will be measured by the EQEP. // // By default, EPWM1A is configured to generate a frequency of 5 kHz - measured // frequency found in freqhz_pr and freqhz_fr should be 5000. // // See DESCRIPTION in Example_freqcal.c for more details on the frequency calculation // performed in this example. // // In addition to this file, the following files must be included in this project: // Example_freqcal.c - includes all eQEP functions // Example_EPwmSetup.c - sets up EPWM1A for use with this example // Example_freqcalh - includes initialization values for frequency structure. // // * Maximum frequency is configured to 10Khz (BaseFreq) // * Minimum frequency is assumed at 50Hz for capture pre-scalar selection // // SPEED_FR: High Frequency Measurement is obtained by counting the external input pulses // for 10ms (unit timer set to 100Hz). // // SPEED_FR = { (Count Delta)/10ms } // // // SPEED_PR: Low Frequency Measurement is obtained by measuring time period of input edges. // Time measurement is averaged over 64edges for better results and // capture unit performs the time measurement using pre-scaled SYSCLK // // Note that pre-scaler for capture unit clock is selected such that // capture timer does not overflow at the required minimum frequency // // This example runs forever until the user stops it. // // // Watch Variables: freq.freqhz_fr - Frequency measurement using position counter/unit time out // freq.freqhz_pr - Frequency measurement using capture unit // //########################################################################### // Original Author: SD // // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File #include "Example_freqcal.h" // Example specific include file void EPwmSetup(void); interrupt void prdTick(void); FREQCAL freq=FREQCAL_DEFAULTS; void main(void) { // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Only init the GPIO for EQep1 and EPwm1 in this case // This function is found in DSP2833x_EQep.c InitEQep1Gpio(); InitEPwm1Gpio(); // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. EALLOW; // This is needed to write to EALLOW protected registers PieVectTable.EPWM1_INT= &prdTick; EDIS; // This is needed to disable write to EALLOW protected registers // Step 4. Initialize all the Device Peripherals: // Example specific ePWM setup. This function is found // in Example_EPwmSetup.c EPwmSetup(); // Step 5. User specific code, enable interrupts: // Enable CPU INT1 which is connected to CPU-Timer 0: IER |= M_INT3; // Enable TINT0 in the PIE: Group 3 interrupt 1 PieCtrlRegs.PIEIER3.bit.INTx1 = 1; // Enable global Interrupts and higher priority real-time debug events: EINT; // Enable Global interrupt INTM ERTM; // Enable Global realtime interrupt DBGM freq.init(&freq); // Initializes eQEP for frequency calculation in // FREQCAL_Init(void)function in Example_EPwmSetup.c for(;;) { } } interrupt void prdTick(void) // Interrupts once per ePWM period { freq.calc(&freq); // Checks for event and calculates frequency in FREQCAL_Calc(FREQCAL *p) // function in Example_EPwmSetup.c // Acknowledge this interrupt to receive more interrupts from group 1 PieCtrlRegs.PIEACK.all = PIEACK_GROUP3; EPwm1Regs.ETCLR.bit.INT=1; }