//########################################################################### // // FILE: Example_2833xCodeRunFromXintf.c // // TITLE: Example Program That Executes From XINTF // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // This example configures CPU Timer0 and increments // a counter each time the timer asserts an interrupt. // // The code is loaded into SARAM. The XINTF Zone 7 is // configured for x16-bit data bus. A porition of the code // is copied to XINTF for execution there. // // Watch Variables: // CpuTimer0.InterruptCount // CpuTimer1.InterruptCount // CpuTimer2.InterruptCount //########################################################################### // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File // These two functions will be loaded into SARAM and copied to // XINTF zone 7 for execution #pragma CODE_SECTION(cpu_timer0_isr,"xintffuncs"); #pragma CODE_SECTION(cpu_timer1_isr,"xintffuncs"); // Prototype statements for functions found within this file: void init_zone7(void); interrupt void cpu_timer0_isr(void); interrupt void cpu_timer1_isr(void); interrupt void cpu_timer2_isr(void); void main(void) { // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. EALLOW; // This is needed to write to EALLOW protected registers PieVectTable.TINT0 = &cpu_timer0_isr; PieVectTable.XINT13 = &cpu_timer1_isr; PieVectTable.TINT2 = &cpu_timer2_isr; EDIS; // This is needed to disable write to EALLOW protected registers // Step 4. Initialize the Device Peripheral. This function can be // found in DSP2833x_CpuTimers.c InitCpuTimers(); // For this example, only initialize the Cpu Timers #if (CPU_FRQ_150MHZ) // Configure CPU-Timer 0, 1, and 2 to interrupt every second: // 150MHz CPU Freq, 1 second Period (in uSeconds) ConfigCpuTimer(&CpuTimer0, 150, 1000000); ConfigCpuTimer(&CpuTimer1, 150, 1000000); ConfigCpuTimer(&CpuTimer2, 150, 1000000); #endif #if (CPU_FRQ_100MHZ) // Configure CPU-Timer 0, 1, and 2 to interrupt every second: // 100MHz CPU Freq, 1 second Period (in uSeconds) ConfigCpuTimer(&CpuTimer0, 100, 1000000); ConfigCpuTimer(&CpuTimer1, 100, 1000000); ConfigCpuTimer(&CpuTimer2, 100, 1000000); #endif // To ensure precise timing, use write-only instructions to write to the entire register. Therefore, if any // of the configuration bits are changed in ConfigCpuTimer and InitCpuTimers (in DSP2833x_CpuTimers.h), the // below settings must also be updated. CpuTimer0Regs.TCR.all = 0x4001; // Use write-only instruction to set TSS bit = 0 CpuTimer1Regs.TCR.all = 0x4001; // Use write-only instruction to set TSS bit = 0 CpuTimer2Regs.TCR.all = 0x4001; // Use write-only instruction to set TSS bit = 0 // Step 5. User specific code, enable interrupts: // Initalize XINTF Zone 7 init_zone7(); // Copy non-time critical code to XINTF // This includes the following ISR functions: cpu_timer0_isr(), cpu_timer1_isr() // The XintffuncsLoadStart, XintffuncsLoadEnd, and XintffuncsRunStart // symbols are created by the linker. Refer to the F28335_ram_xintf.cmd file. MemCopy(&XintffuncsLoadStart, &XintffuncsLoadEnd, &XintffuncsRunStart); // Enable CPU int1 which is connected to CPU-Timer 0, CPU int13 // which is connected to CPU-Timer 1, and CPU int 14, which is connected // to CPU-Timer 2: IER |= M_INT1; IER |= M_INT13; IER |= M_INT14; // Enable TINT0 in the PIE: Group 1 interrupt 7 PieCtrlRegs.PIEIER1.bit.INTx7 = 1; // Enable global Interrupts and higher priority real-time debug events: EINT; // Enable Global interrupt INTM ERTM; // Enable Global realtime interrupt DBGM // Step 6. IDLE loop. Just sit and loop forever (optional): for(;;); } interrupt void cpu_timer0_isr(void) { CpuTimer0.InterruptCount++; // Acknowledge this interrupt to receive more interrupts from group 1 PieCtrlRegs.PIEACK.all = PIEACK_GROUP1; } interrupt void cpu_timer1_isr(void) { CpuTimer1.InterruptCount++; // The CPU acknowledges the interrupt. EDIS; } interrupt void cpu_timer2_isr(void) { EALLOW; CpuTimer2.InterruptCount++; // The CPU acknowledges the interrupt. EDIS; } // Configure the timing paramaters for Zone 7. // Notes: // This function should not be executed from XINTF // Adjust the timing based on the data manual and // external device requirements. void init_zone7(void) { // Make sure the XINTF clock is enabled SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1; // Configure the GPIO for XINTF with a 16-bit data bus // This function is in DSP2833x_Xintf.c InitXintf16Gpio(); EALLOW; // All Zones--------------------------------- // Timing for all zones based on XTIMCLK = SYSCLKOUT XintfRegs.XINTCNF2.bit.XTIMCLK = 0; // Buffer up to 3 writes XintfRegs.XINTCNF2.bit.WRBUFF = 3; // XCLKOUT is enabled XintfRegs.XINTCNF2.bit.CLKOFF = 0; // XCLKOUT = XTIMCLK XintfRegs.XINTCNF2.bit.CLKMODE = 0; // Zone 7------------------------------------ // When using ready, ACTIVE must be 1 or greater // Lead must always be 1 or greater // Zone write timing XintfRegs.XTIMING7.bit.XWRLEAD = 1; XintfRegs.XTIMING7.bit.XWRACTIVE = 2; XintfRegs.XTIMING7.bit.XWRTRAIL = 1; // Zone read timing XintfRegs.XTIMING7.bit.XRDLEAD = 1; XintfRegs.XTIMING7.bit.XRDACTIVE = 3; XintfRegs.XTIMING7.bit.XRDTRAIL = 0; // don't double all Zone read/write lead/active/trail timing XintfRegs.XTIMING7.bit.X2TIMING = 0; // Zone will not sample XREADY signal XintfRegs.XTIMING7.bit.USEREADY = 0; XintfRegs.XTIMING7.bit.READYMODE = 0; // 1,1 = x16 data bus // 0,1 = x32 data bus // other values are reserved XintfRegs.XTIMING7.bit.XSIZE = 3; EDIS; //Force a pipeline flush to ensure that the write to //the last register configured occurs before returning. asm(" RPT #7 || NOP"); } //=========================================================================== // No more. //===========================================================================