// TI File $Revision: /main/8 $ // Checkin $Date: April 21, 2008 15:42:43 $ //########################################################################### // // FILE: Example_2833xGpioToggle.c // // TITLE: DSP2833x Device GPIO toggle test program. // // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // ALL OF THE I/O'S TOGGLE IN THIS PROGRAM. MAKE SURE // THIS WILL NOT DAMAGE YOUR HARDWARE BEFORE RUNNING THIS // EXAMPLE. // // Monitor desired pins on an oscilloscope. // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // DESCRIPTION: // // Three different examples are included. Select the example // (data, set/clear or toggle) to execute before compiling using // the #define statements found at the top of the code. // // // Toggle all of the GPIO PORT pins // // The pins can be observed using Oscilloscope. // // //########################################################################### // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File // Select the example to compile in. Only one example should be set as 1 // the rest should be set as 0. #define EXAMPLE1 1 // Use DATA registers to toggle I/O's #define EXAMPLE2 0 // Use SET/CLEAR registers to toggle I/O's #define EXAMPLE3 0 // Use TOGGLE registers to toggle I/O's // Prototype statements for functions found within this file. void delay_loop(void); void Gpio_select(void); void Gpio_example1(void); void Gpio_example2(void); void Gpio_example3(void); void main(void) { // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Step 2. Initalize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // For this example use the following configuration: Gpio_select(); // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example // Step 5. User specific code: #if EXAMPLE1 // This example uses DATA registers to toggle I/O's Gpio_example1(); #endif // - EXAMPLE1 #if EXAMPLE2 // This example uses SET/CLEAR registers to toggle I/O's Gpio_example2(); #endif #if EXAMPLE3 // This example uses TOGGLE registers to toggle I/O's Gpio_example3(); #endif } void delay_loop() { short i; for (i = 0; i < 1000; i++) {} } void Gpio_example1(void) { // Example 1: // Toggle I/Os using DATA registers for(;;) { GpioDataRegs.GPADAT.all =0xAAAAAAAA; GpioDataRegs.GPBDAT.all =0x0000000A; delay_loop(); GpioDataRegs.GPADAT.all =0x55555555; GpioDataRegs.GPBDAT.all =0x00000005; delay_loop(); } } void Gpio_example2(void) { // Example 2: // Toggle I/Os using SET/CLEAR registers for(;;) { GpioDataRegs.GPASET.all =0xAAAAAAAA; GpioDataRegs.GPACLEAR.all =0x55555555; GpioDataRegs.GPBSET.all =0x0000000A; GpioDataRegs.GPBCLEAR.all =0x00000005; delay_loop(); GpioDataRegs.GPACLEAR.all =0xAAAAAAAA; GpioDataRegs.GPASET.all =0x55555555; GpioDataRegs.GPBCLEAR.all =0x0000000A; GpioDataRegs.GPBSET.all =0x00000005; delay_loop(); } } void Gpio_example3(void) { // Example 2: // Toggle I/Os using TOGGLE registers // Set pins to a known state GpioDataRegs.GPASET.all =0xAAAAAAAA; GpioDataRegs.GPACLEAR.all =0x55555555; GpioDataRegs.GPBSET.all =0x0000000A; GpioDataRegs.GPBCLEAR.all =0x00000005; // Use TOGGLE registers to flip the state of // the pins. // Any bit set to a 1 will flip state (toggle) // Any bit set to a 0 will not toggle. for(;;) { GpioDataRegs.GPATOGGLE.all =0xFFFFFFFF; GpioDataRegs.GPBTOGGLE.all =0x0000000F; delay_loop(); } } void Gpio_select(void) { EALLOW; GpioCtrlRegs.GPAMUX1.all = 0x00000000; // All GPIO GpioCtrlRegs.GPAMUX2.all = 0x00000000; // All GPIO GpioCtrlRegs.GPAMUX1.all = 0x00000000; // All GPIO GpioCtrlRegs.GPADIR.all = 0xFFFFFFFF; // All outputs GpioCtrlRegs.GPBDIR.all = 0x0000000F; // All outputs EDIS; } //=========================================================================== // No more. //===========================================================================