//########################################################################### // // FILE: Example_2833xAdcToDMA.c // // TITLE: DSP2833x ADC To DMA // ASSUMPTIONS: // // This program requires the DSP2833x header files. // // Make sure the CPU clock speed is properly defined in // DSP2833x_Examples.h before compiling this example. // // Connect the signals to be converted to channel A0, A1, A2, and A3. // // As supplied, this project is configured for "boot to SARAM" // operation. The 2833x Boot Mode table is shown below. // For information on configuring the boot mode of an eZdsp, // please refer to the documentation included with the eZdsp, // // $Boot_Table: // // GPIO87 GPIO86 GPIO85 GPIO84 // XA15 XA14 XA13 XA12 // PU PU PU PU // ========================================== // 1 1 1 1 Jump to Flash // 1 1 1 0 SCI-A boot // 1 1 0 1 SPI-A boot // 1 1 0 0 I2C-A boot // 1 0 1 1 eCAN-A boot // 1 0 1 0 McBSP-A boot // 1 0 0 1 Jump to XINTF x16 // 1 0 0 0 Jump to XINTF x32 // 0 1 1 1 Jump to OTP // 0 1 1 0 Parallel GPIO I/O boot // 0 1 0 1 Parallel XINTF boot // 0 1 0 0 Jump to SARAM <- "boot to SARAM" // 0 0 1 1 Branch to check boot mode // 0 0 1 0 Boot to flash, bypass ADC cal // 0 0 0 1 Boot to SARAM, bypass ADC cal // 0 0 0 0 Boot to SCI-A, bypass ADC cal // Boot_Table_End$ // // // DESCRIPTION: // // ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs. // Each SOC initiates 4 conversions. // DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort // the data by channel sequentially, i.e. all channel0 data will be together // all channel1 data will be together. // // Code should stop in local_DINTCH1_ISR when complete // // Watch Variables: // DMABuf1 // //########################################################################### // // Original source by: M.P. // // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP28x_Project.h" // Device Headerfile and Examples Include File // ADC start parameters #if (CPU_FRQ_150MHZ) // Default - 150 MHz SYSCLKOUT #define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz #endif #if (CPU_FRQ_100MHZ) #define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz #endif #define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz #define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks #define AVG 1000 // Average sample limit #define ZOFFSET 0x00 // Average Zero offset #define BUF_SIZE 40 // Sample buffer size // Global variable for this example Uint16 j=0; #pragma DATA_SECTION(DMABuf1,"DMARAML4"); volatile Uint16 DMABuf1[40]; volatile Uint16 *DMADest; volatile Uint16 *DMASource; interrupt void local_DINTCH1_ISR(void); void main(void) { Uint16 i; // Step 1. Initialize System Control: // PLL, WatchDog, enable Peripheral Clocks // This example function is found in the DSP2833x_SysCtrl.c file. InitSysCtrl(); // Specific clock setting for this example: EALLOW; SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK EDIS; // Step 2. Initialize GPIO: // This example function is found in the DSP2833x_Gpio.c file and // illustrates how to set the GPIO to it's default state. // InitGpio(); // Skipped for this example // Step 3. Clear all interrupts and initialize PIE vector table: // Disable CPU interrupts DINT; // Initialize the PIE control registers to their default state. // The default state is all PIE interrupts disabled and flags // are cleared. // This function is found in the DSP2833x_PieCtrl.c file. InitPieCtrl(); // Disable CPU interrupts and clear all CPU interrupt flags: IER = 0x0000; IFR = 0x0000; // Initialize the PIE vector table with pointers to the shell Interrupt // Service Routines (ISR). // This will populate the entire table, even if the interrupt // is not used in this example. This is useful for debug purposes. // The shell ISR routines are found in DSP2833x_DefaultIsr.c. // This function is found in DSP2833x_PieVect.c. InitPieVectTable(); // Interrupts that are used in this example are re-mapped to // ISR functions found within this file. EALLOW; // Allow access to EALLOW protected registers PieVectTable.DINTCH1= &local_DINTCH1_ISR; EDIS; // Disable access to EALLOW protected registers IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1) EnableInterrupts(); // Step 4. Initialize all the Device Peripherals: // This function is found in DSP2833x_InitPeripherals.c // InitPeripherals(); // Not required for this example InitAdc(); // For this example, init the ADC // Specific ADC setup for this example: AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK; AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS; AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1; AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1; AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0; AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1; AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2; AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3; AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0; AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1; AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2; AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3; AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 3; // Set up ADC to perform 4 conversions for every SOC //Step 5. User specific code, enable interrupts: // Initialize DMA DMAInitialize(); // Clear Table for (i=0; i