// TI File $Revision: /main/7 $ // Checkin $Date: September 20, 2007 13:30:31 $ //########################################################################### // // FILE: DSP2833x_SysCtrl.c // // TITLE: DSP2833x Device System Control Initialization & Support Functions. // // DESCRIPTION: // // Example initialization of system resources. // //########################################################################### // $TI Release: DSP2833x/DSP2823x Header Files V1.20 $ // $Release Date: August 1, 2008 $ //########################################################################### #include "DSP2833x_Device.h" // Headerfile Include File #include "DSP2833x_Examples.h" // Examples Include File // Functions that will be run from RAM need to be assigned to // a different section. This section will then be mapped to a load and // run address using the linker cmd file. #pragma CODE_SECTION(InitFlash, "ramfuncs"); //--------------------------------------------------------------------------- // InitSysCtrl: //--------------------------------------------------------------------------- // This function initializes the System Control registers to a known state. // - Disables the watchdog // - Set the PLLCR for proper SYSCLKOUT frequency // - Set the pre-scaler for the high and low frequency peripheral clocks // - Enable the clocks to the peripherals long SYSCLKOUT, LSPCLK, HSPCLK; void InitSysCtrl(void) { // Disable the watchdog DisableDog(); // Initialize the PLL control: PLLCR and DIVSEL // DSP28_PLLCR and DSP28_DIVSEL are defined in DSP2833x_Examples.h InitPll(DSP28_PLLCR,DSP28_DIVSEL); // Initialize the peripheral clocks InitPeripheralClocks(); } //--------------------------------------------------------------------------- // Example: InitFlash: //--------------------------------------------------------------------------- // This function initializes the Flash Control registers // CAUTION // This function MUST be executed out of RAM. Executing it // out of OTP/Flash will yield unpredictable results void InitFlash(void) { EALLOW; //Enable Flash Pipeline mode to improve performance //of code executed from Flash. FlashRegs.FOPT.bit.ENPIPE = 1; // CAUTION //Minimum waitstates required for the flash operating //at a given CPU rate must be characterized by TI. //Refer to the datasheet for the latest information. #if CPU_FRQ_150MHZ //Set the Paged Waitstate for the Flash FlashRegs.FBANKWAIT.bit.PAGEWAIT = 5; //Set the Random Waitstate for the Flash FlashRegs.FBANKWAIT.bit.RANDWAIT = 5; //Set the Waitstate for the OTP FlashRegs.FOTPWAIT.bit.OTPWAIT = 8; #endif #if CPU_FRQ_100MHZ //Set the Paged Waitstate for the Flash FlashRegs.FBANKWAIT.bit.PAGEWAIT = 3; //Set the Random Waitstate for the Flash FlashRegs.FBANKWAIT.bit.RANDWAIT = 3; //Set the Waitstate for the OTP FlashRegs.FOTPWAIT.bit.OTPWAIT = 5; #endif // CAUTION //ONLY THE DEFAULT VALUE FOR THESE 2 REGISTERS SHOULD BE USED FlashRegs.FSTDBYWAIT.bit.STDBYWAIT = 0x01FF; FlashRegs.FACTIVEWAIT.bit.ACTIVEWAIT = 0x01FF; EDIS; //Force a pipeline flush to ensure that the write to //the last register configured occurs before returning. asm(" RPT #7 || NOP"); } //--------------------------------------------------------------------------- // Example: ServiceDog: //--------------------------------------------------------------------------- // This function resets the watchdog timer. // Enable this function for using ServiceDog in the application void ServiceDog(void) { if(SysCtrlRegs.PLLCR.bit.DIV == DSP28_PLLCR) if(SysCtrlRegs.PLLSTS.bit.DIVSEL == DSP28_DIVSEL) { EALLOW; SysCtrlRegs.WDKEY = 0x0055; SysCtrlRegs.WDKEY = 0x00AA; EDIS; return; } } //--------------------------------------------------------------------------- // Example: DisableDog: //--------------------------------------------------------------------------- // This function disables the watchdog timer. void DisableDog(void) { EALLOW; SysCtrlRegs.WDCR= 0x0068; EDIS; } //--------------------------------------------------------------------------- // Example: InitPll: //--------------------------------------------------------------------------- // This function initializes the PLLCR register. void InitPll(Uint16 val, Uint16 divsel) { long Val; val = 10; divsel = 2; // Make sure the PLL is not running in limp mode if (SysCtrlRegs.PLLSTS.bit.MCLKSTS != 0) { // Missing external clock has been detected // Replace this line with a call to an appropriate // SystemShutdown(); function. asm(" ESTOP0"); } // DIVSEL MUST be 0 before PLLCR can be changed from // 0x0000. It is set to 0 by an external reset XRSn // This puts us in 1/4 if (SysCtrlRegs.PLLSTS.bit.DIVSEL != 0) { EALLOW; SysCtrlRegs.PLLSTS.bit.DIVSEL = 0; EDIS; } // Change the PLLCR // if (SysCtrlRegs.PLLCR.bit.DIV != val) { EALLOW; // Before setting PLLCR turn off missing clock detect logic SysCtrlRegs.PLLSTS.bit.MCLKOFF = 1; SysCtrlRegs.PLLCR.bit.DIV = val; EDIS; Val = (val)?val:1; Val = XCLKIN * (Val / 2); SYSCLKOUT = Val; // Optional: Wait for PLL to lock. // During this time the CPU will switch to OSCCLK/2 until // the PLL is stable. Once the PLL is stable the CPU will // switch to the new PLL value. // // This time-to-lock is monitored by a PLL lock counter. // // Code is not required to sit and wait for the PLL to lock. // However, if the code does anything that is timing critical, // and requires the correct clock be locked, then it is best to // wait until this switching has completed. // Wait for the PLL lock bit to be set. // The watchdog should be disabled before this loop, or fed within // the loop via ServiceDog(). // Uncomment to disable the watchdog DisableDog(); while(SysCtrlRegs.PLLSTS.bit.PLLLOCKS != 1) { // Uncomment to service the watchdog // ServiceDog(); } EALLOW; SysCtrlRegs.PLLSTS.bit.MCLKOFF = 0; EDIS; } // If switching to 1/2 if((divsel == 1)||(divsel == 2)) { EALLOW; SysCtrlRegs.PLLSTS.bit.DIVSEL = divsel; EDIS; } // If switching to 1/1 // * First go to 1/2 and let the power settle // The time required will depend on the system, this is only an example // * Then switch to 1/1 if(divsel == 3) { EALLOW; SysCtrlRegs.PLLSTS.bit.DIVSEL = 2; DELAY_US(50L); // pause_us(50L); SysCtrlRegs.PLLSTS.bit.DIVSEL = 3; EDIS; } } //-------------------------------------------------------------------------- // Example: InitPeripheralClocks: //--------------------------------------------------------------------------- // This function initializes the clocks to the peripheral modules. // First the high and low clock prescalers are set // Second the clocks are enabled to each peripheral. // To reduce power, leave clocks to unused peripherals disabled // // Note: If a peripherals clock is not enabled then you cannot // read or write to the registers for that peripheral void InitPeripheralClocks(void) { long Val; EALLOW; // HISPCP/LOSPCP prescale register settings, normally it will be set to default values SysCtrlRegs.HISPCP.all = 0x0003; SysCtrlRegs.LOSPCP.all = 0x0000; Val = (SysCtrlRegs.HISPCP.all)? SysCtrlRegs.HISPCP.all*2 : 1; Val = SYSCLKOUT / Val; HSPCLK = Val; Val = (SysCtrlRegs.LOSPCP.all)? SysCtrlRegs.LOSPCP.all*2 : 1; Val = SYSCLKOUT / Val; LSPCLK = Val; // XCLKOUT to SYSCLKOUT ratio. By default XCLKOUT = 1/4 SYSCLKOUT // XTIMCLK = SYSCLKOUT/2 XintfRegs.XINTCNF2.bit.XTIMCLK = 1; // XCLKOUT = XTIMCLK/2 XintfRegs.XINTCNF2.bit.CLKMODE = 1; // Enable XCLKOUT XintfRegs.XINTCNF2.bit.CLKOFF = 0; // Peripheral clock enables set for the selected peripherals. // If you are not using a peripheral leave the clock off // to save on power. // // Note: not all peripherals are available on all 2833x derivates. // Refer to the datasheet for your particular device. // // This function is not written to be an example of efficient code. SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1; // ADC // *IMPORTANT* // The ADC_cal function, which copies the ADC calibration values from TI reserved // OTP into the ADCREFSEL and ADCOFFTRIM registers, occurs automatically in the // Boot ROM. If the boot ROM code is bypassed during the debug process, the // following function MUST be called for the ADC to function according // to specification. The clocks to the ADC MUST be enabled before calling this // function. // See the device data manual and/or the ADC Reference // Manual for more information. ADC_cal(); SysCtrlRegs.PCLKCR0.bit.I2CAENCLK = 1; // I2C SysCtrlRegs.PCLKCR0.bit.SCIAENCLK = 1; // SCI-A SysCtrlRegs.PCLKCR0.bit.SCIBENCLK = 1; // SCI-B SysCtrlRegs.PCLKCR0.bit.SCICENCLK = 1; // SCI-C SysCtrlRegs.PCLKCR0.bit.SPIAENCLK = 1; // SPI-A SysCtrlRegs.PCLKCR0.bit.MCBSPAENCLK = 1; // McBSP-A SysCtrlRegs.PCLKCR0.bit.MCBSPBENCLK = 1; // McBSP-B SysCtrlRegs.PCLKCR0.bit.ECANAENCLK=1; // eCAN-A SysCtrlRegs.PCLKCR0.bit.ECANBENCLK=1; // eCAN-B SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; // Disable TBCLK within the ePWM SysCtrlRegs.PCLKCR1.bit.EPWM1ENCLK = 1; // ePWM1 SysCtrlRegs.PCLKCR1.bit.EPWM2ENCLK = 1; // ePWM2 SysCtrlRegs.PCLKCR1.bit.EPWM3ENCLK = 1; // ePWM3 SysCtrlRegs.PCLKCR1.bit.EPWM4ENCLK = 1; // ePWM4 SysCtrlRegs.PCLKCR1.bit.EPWM5ENCLK = 1; // ePWM5 SysCtrlRegs.PCLKCR1.bit.EPWM6ENCLK = 1; // ePWM6 SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1; // Enable TBCLK within the ePWM SysCtrlRegs.PCLKCR1.bit.ECAP3ENCLK = 1; // eCAP3 SysCtrlRegs.PCLKCR1.bit.ECAP4ENCLK = 1; // eCAP4 SysCtrlRegs.PCLKCR1.bit.ECAP5ENCLK = 1; // eCAP5 SysCtrlRegs.PCLKCR1.bit.ECAP6ENCLK = 1; // eCAP6 SysCtrlRegs.PCLKCR1.bit.ECAP1ENCLK = 1; // eCAP1 SysCtrlRegs.PCLKCR1.bit.ECAP2ENCLK = 1; // eCAP2 SysCtrlRegs.PCLKCR1.bit.EQEP1ENCLK = 1; // eQEP1 SysCtrlRegs.PCLKCR1.bit.EQEP2ENCLK = 1; // eQEP2 SysCtrlRegs.PCLKCR3.bit.CPUTIMER0ENCLK = 1; // CPU Timer 0 SysCtrlRegs.PCLKCR3.bit.CPUTIMER1ENCLK = 1; // CPU Timer 1 SysCtrlRegs.PCLKCR3.bit.CPUTIMER2ENCLK = 1; // CPU Timer 2 SysCtrlRegs.PCLKCR3.bit.DMAENCLK = 1; // DMA Clock SysCtrlRegs.PCLKCR3.bit.XINTFENCLK = 1; // XTIMCLK SysCtrlRegs.PCLKCR3.bit.GPIOINENCLK = 1; // GPIO input clock EDIS; } //--------------------------------------------------------------------------- // Example: CsmUnlock: //--------------------------------------------------------------------------- // This function unlocks the CSM. User must replace 0xFFFF's with current // password for the DSP. Returns 1 if unlock is successful. #define STATUS_FAIL 0 #define STATUS_SUCCESS 1 Uint16 CsmUnlock() { volatile Uint16 temp; // Load the key registers with the current password. The 0xFFFF's are dummy // passwords. User should replace them with the correct password for the DSP. EALLOW; CsmRegs.KEY0 = 0xFFFF; CsmRegs.KEY1 = 0xFFFF; CsmRegs.KEY2 = 0xFFFF; CsmRegs.KEY3 = 0xFFFF; CsmRegs.KEY4 = 0xFFFF; CsmRegs.KEY5 = 0xFFFF; CsmRegs.KEY6 = 0xFFFF; CsmRegs.KEY7 = 0xFFFF; EDIS; // Perform a dummy read of the password locations // if they match the key values, the CSM will unlock temp = CsmPwl.PSWD0; temp = CsmPwl.PSWD1; temp = CsmPwl.PSWD2; temp = CsmPwl.PSWD3; temp = CsmPwl.PSWD4; temp = CsmPwl.PSWD5; temp = CsmPwl.PSWD6; temp = CsmPwl.PSWD7; // If the CSM unlocked, return succes, otherwise return // failure. if (CsmRegs.CSMSCR.bit.SECURE == 0) return STATUS_SUCCESS; else return STATUS_FAIL; } //=========================================================================== // End of file. //===========================================================================