474 lines
16 KiB
C
474 lines
16 KiB
C
|
// TI File $Revision: /main/10 $
|
||
|
// Checkin $Date: April 21, 2008 15:43:02 $
|
||
|
//###########################################################################
|
||
|
//
|
||
|
// FILE: Example_2833xI2c_eeprom.c
|
||
|
//
|
||
|
// TITLE: DSP2833x I2C EEPROM Example
|
||
|
//
|
||
|
// ASSUMPTIONS:
|
||
|
//
|
||
|
// This program requires the DSP2833x header files.
|
||
|
//
|
||
|
// This program requires an external I2C EEPROM connected to
|
||
|
// the I2C bus at address 0x50.
|
||
|
//
|
||
|
// As supplied, this project is configured for "boot to SARAM"
|
||
|
// operation. The 2833x Boot Mode table is shown below.
|
||
|
// For information on configuring the boot mode of an eZdsp,
|
||
|
// please refer to the documentation included with the eZdsp,
|
||
|
//
|
||
|
// $Boot_Table:
|
||
|
//
|
||
|
// GPIO87 GPIO86 GPIO85 GPIO84
|
||
|
// XA15 XA14 XA13 XA12
|
||
|
// PU PU PU PU
|
||
|
// ==========================================
|
||
|
// 1 1 1 1 Jump to Flash
|
||
|
// 1 1 1 0 SCI-A boot
|
||
|
// 1 1 0 1 SPI-A boot
|
||
|
// 1 1 0 0 I2C-A boot
|
||
|
// 1 0 1 1 eCAN-A boot
|
||
|
// 1 0 1 0 McBSP-A boot
|
||
|
// 1 0 0 1 Jump to XINTF x16
|
||
|
// 1 0 0 0 Jump to XINTF x32
|
||
|
// 0 1 1 1 Jump to OTP
|
||
|
// 0 1 1 0 Parallel GPIO I/O boot
|
||
|
// 0 1 0 1 Parallel XINTF boot
|
||
|
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
|
||
|
// 0 0 1 1 Branch to check boot mode
|
||
|
// 0 0 1 0 Boot to flash, bypass ADC cal
|
||
|
// 0 0 0 1 Boot to SARAM, bypass ADC cal
|
||
|
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
|
||
|
// Boot_Table_End$
|
||
|
//
|
||
|
// DESCRIPTION:
|
||
|
//
|
||
|
// This program will write 1-14 words to EEPROM and read them back.
|
||
|
// The data written and the EEPROM address written to are contained
|
||
|
// in the message structure, I2cMsgOut1. The data read back will be
|
||
|
// contained in the message structure I2cMsgIn1.
|
||
|
//
|
||
|
// This program will work with the on-board I2C EEPROM supplied on
|
||
|
// the F2833x eZdsp.
|
||
|
//
|
||
|
//
|
||
|
//###########################################################################
|
||
|
// Original Author: D.F.
|
||
|
//
|
||
|
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
|
||
|
// $Release Date: August 1, 2008 $
|
||
|
//###########################################################################
|
||
|
|
||
|
|
||
|
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
|
||
|
|
||
|
// Note: I2C Macros used in this example can be found in the
|
||
|
// DSP2833x_I2C_defines.h file
|
||
|
|
||
|
// Prototype statements for functions found within this file.
|
||
|
void I2CA_Init(void);
|
||
|
Uint16 I2CA_WriteData(struct I2CMSG *msg);
|
||
|
Uint16 I2CA_ReadData(struct I2CMSG *msg);
|
||
|
interrupt void i2c_int1a_isr(void);
|
||
|
void pass(void);
|
||
|
void fail(void);
|
||
|
|
||
|
#define I2C_SLAVE_ADDR 0x50
|
||
|
#define I2C_NUMBYTES 4
|
||
|
#define I2C_EEPROM_HIGH_ADDR 0x00
|
||
|
#define I2C_EEPROM_LOW_ADDR 0x30
|
||
|
|
||
|
// Global variables
|
||
|
// Two bytes will be used for the outgoing address,
|
||
|
// thus only setup 14 bytes maximum
|
||
|
struct I2CMSG I2cMsgOut1={I2C_MSGSTAT_SEND_WITHSTOP,
|
||
|
I2C_SLAVE_ADDR,
|
||
|
I2C_NUMBYTES,
|
||
|
I2C_EEPROM_HIGH_ADDR,
|
||
|
I2C_EEPROM_LOW_ADDR,
|
||
|
0x12, // Msg Byte 1
|
||
|
0x34, // Msg Byte 2
|
||
|
0x56, // Msg Byte 3
|
||
|
0x78, // Msg Byte 4
|
||
|
0x9A, // Msg Byte 5
|
||
|
0xBC, // Msg Byte 6
|
||
|
0xDE, // Msg Byte 7
|
||
|
0xF0, // Msg Byte 8
|
||
|
0x11, // Msg Byte 9
|
||
|
0x10, // Msg Byte 10
|
||
|
0x11, // Msg Byte 11
|
||
|
0x12, // Msg Byte 12
|
||
|
0x13, // Msg Byte 13
|
||
|
0x12}; // Msg Byte 14
|
||
|
|
||
|
|
||
|
struct I2CMSG I2cMsgIn1={ I2C_MSGSTAT_SEND_NOSTOP,
|
||
|
I2C_SLAVE_ADDR,
|
||
|
I2C_NUMBYTES,
|
||
|
I2C_EEPROM_HIGH_ADDR,
|
||
|
I2C_EEPROM_LOW_ADDR};
|
||
|
|
||
|
struct I2CMSG *CurrentMsgPtr; // Used in interrupts
|
||
|
Uint16 PassCount;
|
||
|
Uint16 FailCount;
|
||
|
|
||
|
void main(void)
|
||
|
{
|
||
|
Uint16 Error;
|
||
|
Uint16 i;
|
||
|
|
||
|
CurrentMsgPtr = &I2cMsgOut1;
|
||
|
|
||
|
// Step 1. Initialize System Control:
|
||
|
// PLL, WatchDog, enable Peripheral Clocks
|
||
|
// This example function is found in the DSP2833x_SysCtrl.c file.
|
||
|
InitSysCtrl();
|
||
|
|
||
|
|
||
|
// Step 2. Initalize GPIO:
|
||
|
// This example function is found in the DSP2833x_Gpio.c file and
|
||
|
// illustrates how to set the GPIO to it's default state.
|
||
|
// InitGpio();
|
||
|
// Setup only the GP I/O only for I2C functionality
|
||
|
InitI2CGpio();
|
||
|
|
||
|
// Step 3. Clear all interrupts and initialize PIE vector table:
|
||
|
// Disable CPU interrupts
|
||
|
DINT;
|
||
|
|
||
|
// Initialize PIE control registers to their default state.
|
||
|
// The default state is all PIE interrupts disabled and flags
|
||
|
// are cleared.
|
||
|
// This function is found in the DSP2833x_PieCtrl.c file.
|
||
|
InitPieCtrl();
|
||
|
|
||
|
// Disable CPU interrupts and clear all CPU interrupt flags:
|
||
|
IER = 0x0000;
|
||
|
IFR = 0x0000;
|
||
|
|
||
|
// Initialize the PIE vector table with pointers to the shell Interrupt
|
||
|
// Service Routines (ISR).
|
||
|
// This will populate the entire table, even if the interrupt
|
||
|
// is not used in this example. This is useful for debug purposes.
|
||
|
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
|
||
|
// This function is found in DSP2833x_PieVect.c.
|
||
|
InitPieVectTable();
|
||
|
|
||
|
// Interrupts that are used in this example are re-mapped to
|
||
|
// ISR functions found within this file.
|
||
|
EALLOW; // This is needed to write to EALLOW protected registers
|
||
|
PieVectTable.I2CINT1A = &i2c_int1a_isr;
|
||
|
EDIS; // This is needed to disable write to EALLOW protected registers
|
||
|
|
||
|
// Step 4. Initialize all the Device Peripherals:
|
||
|
// This function is found in DSP2833x_InitPeripherals.c
|
||
|
// InitPeripherals(); // Not required for this example
|
||
|
I2CA_Init();
|
||
|
|
||
|
// Step 5. User specific code
|
||
|
|
||
|
// Clear Counters
|
||
|
PassCount = 0;
|
||
|
FailCount = 0;
|
||
|
|
||
|
// Clear incoming message buffer
|
||
|
for (i = 0; i < I2C_MAX_BUFFER_SIZE; i++)
|
||
|
{
|
||
|
I2cMsgIn1.MsgBuffer[i] = 0x0000;
|
||
|
}
|
||
|
|
||
|
// Enable interrupts required for this example
|
||
|
|
||
|
// Enable I2C interrupt 1 in the PIE: Group 8 interrupt 1
|
||
|
PieCtrlRegs.PIEIER8.bit.INTx1 = 1;
|
||
|
|
||
|
// Enable CPU INT8 which is connected to PIE group 8
|
||
|
IER |= M_INT8;
|
||
|
EINT;
|
||
|
|
||
|
// Application loop
|
||
|
for(;;)
|
||
|
{
|
||
|
//////////////////////////////////
|
||
|
// Write data to EEPROM section //
|
||
|
//////////////////////////////////
|
||
|
|
||
|
// Check the outgoing message to see if it should be sent.
|
||
|
// In this example it is initialized to send with a stop bit.
|
||
|
if(I2cMsgOut1.MsgStatus == I2C_MSGSTAT_SEND_WITHSTOP)
|
||
|
{
|
||
|
Error = I2CA_WriteData(&I2cMsgOut1);
|
||
|
// If communication is correctly initiated, set msg status to busy
|
||
|
// and update CurrentMsgPtr for the interrupt service routine.
|
||
|
// Otherwise, do nothing and try again next loop. Once message is
|
||
|
// initiated, the I2C interrupts will handle the rest. Search for
|
||
|
// ICINTR1A_ISR in the i2c_eeprom_isr.c file.
|
||
|
if (Error == I2C_SUCCESS)
|
||
|
{
|
||
|
CurrentMsgPtr = &I2cMsgOut1;
|
||
|
I2cMsgOut1.MsgStatus = I2C_MSGSTAT_WRITE_BUSY;
|
||
|
}
|
||
|
} // end of write section
|
||
|
|
||
|
///////////////////////////////////
|
||
|
// Read data from EEPROM section //
|
||
|
///////////////////////////////////
|
||
|
|
||
|
// Check outgoing message status. Bypass read section if status is
|
||
|
// not inactive.
|
||
|
if (I2cMsgOut1.MsgStatus == I2C_MSGSTAT_INACTIVE)
|
||
|
{
|
||
|
// Check incoming message status.
|
||
|
if(I2cMsgIn1.MsgStatus == I2C_MSGSTAT_SEND_NOSTOP)
|
||
|
{
|
||
|
// EEPROM address setup portion
|
||
|
while(I2CA_ReadData(&I2cMsgIn1) != I2C_SUCCESS)
|
||
|
{
|
||
|
// Maybe setup an attempt counter to break an infinite while
|
||
|
// loop. The EEPROM will send back a NACK while it is performing
|
||
|
// a write operation. Even though the write communique is
|
||
|
// complete at this point, the EEPROM could still be busy
|
||
|
// programming the data. Therefore, multiple attempts are
|
||
|
// necessary.
|
||
|
}
|
||
|
// Update current message pointer and message status
|
||
|
CurrentMsgPtr = &I2cMsgIn1;
|
||
|
I2cMsgIn1.MsgStatus = I2C_MSGSTAT_SEND_NOSTOP_BUSY;
|
||
|
}
|
||
|
|
||
|
// Once message has progressed past setting up the internal address
|
||
|
// of the EEPROM, send a restart to read the data bytes from the
|
||
|
// EEPROM. Complete the communique with a stop bit. MsgStatus is
|
||
|
// updated in the interrupt service routine.
|
||
|
else if(I2cMsgIn1.MsgStatus == I2C_MSGSTAT_RESTART)
|
||
|
{
|
||
|
// Read data portion
|
||
|
while(I2CA_ReadData(&I2cMsgIn1) != I2C_SUCCESS)
|
||
|
{
|
||
|
// Maybe setup an attempt counter to break an infinite while
|
||
|
// loop.
|
||
|
}
|
||
|
// Update current message pointer and message status
|
||
|
CurrentMsgPtr = &I2cMsgIn1;
|
||
|
I2cMsgIn1.MsgStatus = I2C_MSGSTAT_READ_BUSY;
|
||
|
}
|
||
|
} // end of read section
|
||
|
|
||
|
} // end of for(;;)
|
||
|
} // end of main
|
||
|
|
||
|
|
||
|
void I2CA_Init(void)
|
||
|
{
|
||
|
// Initialize I2C
|
||
|
I2caRegs.I2CSAR = 0x0050; // Slave address - EEPROM control code
|
||
|
|
||
|
#if (CPU_FRQ_150MHZ) // Default - For 150MHz SYSCLKOUT
|
||
|
I2caRegs.I2CPSC.all = 14; // Prescaler - need 7-12 Mhz on module clk (150/15 = 10MHz)
|
||
|
#endif
|
||
|
#if (CPU_FRQ_100MHZ) // For 100 MHz SYSCLKOUT
|
||
|
I2caRegs.I2CPSC.all = 9; // Prescaler - need 7-12 Mhz on module clk (100/10 = 10MHz)
|
||
|
#endif
|
||
|
|
||
|
I2caRegs.I2CCLKL = 10; // NOTE: must be non zero
|
||
|
I2caRegs.I2CCLKH = 5; // NOTE: must be non zero
|
||
|
I2caRegs.I2CIER.all = 0x24; // Enable SCD & ARDY interrupts
|
||
|
|
||
|
I2caRegs.I2CMDR.all = 0x0020; // Take I2C out of reset
|
||
|
// Stop I2C when suspended
|
||
|
|
||
|
I2caRegs.I2CFFTX.all = 0x6000; // Enable FIFO mode and TXFIFO
|
||
|
I2caRegs.I2CFFRX.all = 0x2040; // Enable RXFIFO, clear RXFFINT,
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
Uint16 I2CA_WriteData(struct I2CMSG *msg)
|
||
|
{
|
||
|
Uint16 i;
|
||
|
|
||
|
// Wait until the STP bit is cleared from any previous master communication.
|
||
|
// Clearing of this bit by the module is delayed until after the SCD bit is
|
||
|
// set. If this bit is not checked prior to initiating a new message, the
|
||
|
// I2C could get confused.
|
||
|
if (I2caRegs.I2CMDR.bit.STP == 1)
|
||
|
{
|
||
|
return I2C_STP_NOT_READY_ERROR;
|
||
|
}
|
||
|
|
||
|
// Setup slave address
|
||
|
I2caRegs.I2CSAR = msg->SlaveAddress;
|
||
|
|
||
|
// Check if bus busy
|
||
|
if (I2caRegs.I2CSTR.bit.BB == 1)
|
||
|
{
|
||
|
return I2C_BUS_BUSY_ERROR;
|
||
|
}
|
||
|
|
||
|
// Setup number of bytes to send
|
||
|
// MsgBuffer + Address
|
||
|
I2caRegs.I2CCNT = msg->NumOfBytes+2;
|
||
|
|
||
|
// Setup data to send
|
||
|
I2caRegs.I2CDXR = msg->MemoryHighAddr;
|
||
|
I2caRegs.I2CDXR = msg->MemoryLowAddr;
|
||
|
// for (i=0; i<msg->NumOfBytes-2; i++)
|
||
|
for (i=0; i<msg->NumOfBytes; i++)
|
||
|
|
||
|
{
|
||
|
I2caRegs.I2CDXR = *(msg->MsgBuffer+i);
|
||
|
}
|
||
|
|
||
|
// Send start as master transmitter
|
||
|
I2caRegs.I2CMDR.all = 0x6E20;
|
||
|
|
||
|
return I2C_SUCCESS;
|
||
|
}
|
||
|
|
||
|
|
||
|
Uint16 I2CA_ReadData(struct I2CMSG *msg)
|
||
|
{
|
||
|
// Wait until the STP bit is cleared from any previous master communication.
|
||
|
// Clearing of this bit by the module is delayed until after the SCD bit is
|
||
|
// set. If this bit is not checked prior to initiating a new message, the
|
||
|
// I2C could get confused.
|
||
|
if (I2caRegs.I2CMDR.bit.STP == 1)
|
||
|
{
|
||
|
return I2C_STP_NOT_READY_ERROR;
|
||
|
}
|
||
|
|
||
|
I2caRegs.I2CSAR = msg->SlaveAddress;
|
||
|
|
||
|
if(msg->MsgStatus == I2C_MSGSTAT_SEND_NOSTOP)
|
||
|
{
|
||
|
// Check if bus busy
|
||
|
if (I2caRegs.I2CSTR.bit.BB == 1)
|
||
|
{
|
||
|
return I2C_BUS_BUSY_ERROR;
|
||
|
}
|
||
|
I2caRegs.I2CCNT = 2;
|
||
|
I2caRegs.I2CDXR = msg->MemoryHighAddr;
|
||
|
I2caRegs.I2CDXR = msg->MemoryLowAddr;
|
||
|
I2caRegs.I2CMDR.all = 0x2620; // Send data to setup EEPROM address
|
||
|
}
|
||
|
else if(msg->MsgStatus == I2C_MSGSTAT_RESTART)
|
||
|
{
|
||
|
I2caRegs.I2CCNT = msg->NumOfBytes; // Setup how many bytes to expect
|
||
|
I2caRegs.I2CMDR.all = 0x2C20; // Send restart as master receiver
|
||
|
}
|
||
|
|
||
|
return I2C_SUCCESS;
|
||
|
}
|
||
|
|
||
|
interrupt void i2c_int1a_isr(void) // I2C-A
|
||
|
{
|
||
|
Uint16 IntSource, i;
|
||
|
|
||
|
// Read interrupt source
|
||
|
IntSource = I2caRegs.I2CISRC.all;
|
||
|
|
||
|
// Interrupt source = stop condition detected
|
||
|
if(IntSource == I2C_SCD_ISRC)
|
||
|
{
|
||
|
// If completed message was writing data, reset msg to inactive state
|
||
|
if (CurrentMsgPtr->MsgStatus == I2C_MSGSTAT_WRITE_BUSY)
|
||
|
{
|
||
|
CurrentMsgPtr->MsgStatus = I2C_MSGSTAT_INACTIVE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// If a message receives a NACK during the address setup portion of the
|
||
|
// EEPROM read, the code further below included in the register access ready
|
||
|
// interrupt source code will generate a stop condition. After the stop
|
||
|
// condition is received (here), set the message status to try again.
|
||
|
// User may want to limit the number of retries before generating an error.
|
||
|
if(CurrentMsgPtr->MsgStatus == I2C_MSGSTAT_SEND_NOSTOP_BUSY)
|
||
|
{
|
||
|
CurrentMsgPtr->MsgStatus = I2C_MSGSTAT_SEND_NOSTOP;
|
||
|
}
|
||
|
// If completed message was reading EEPROM data, reset msg to inactive state
|
||
|
// and read data from FIFO.
|
||
|
else if (CurrentMsgPtr->MsgStatus == I2C_MSGSTAT_READ_BUSY)
|
||
|
{
|
||
|
CurrentMsgPtr->MsgStatus = I2C_MSGSTAT_INACTIVE;
|
||
|
for(i=0; i < I2C_NUMBYTES; i++)
|
||
|
{
|
||
|
CurrentMsgPtr->MsgBuffer[i] = I2caRegs.I2CDRR;
|
||
|
}
|
||
|
{
|
||
|
// Check recieved data
|
||
|
for(i=0; i < I2C_NUMBYTES; i++)
|
||
|
{
|
||
|
if(I2cMsgIn1.MsgBuffer[i] == I2cMsgOut1.MsgBuffer[i])
|
||
|
{
|
||
|
PassCount++;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
FailCount++;
|
||
|
}
|
||
|
}
|
||
|
if(PassCount == I2C_NUMBYTES)
|
||
|
{
|
||
|
pass();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fail();
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
} // end of stop condition detected
|
||
|
|
||
|
// Interrupt source = Register Access Ready
|
||
|
// This interrupt is used to determine when the EEPROM address setup portion of the
|
||
|
// read data communication is complete. Since no stop bit is commanded, this flag
|
||
|
// tells us when the message has been sent instead of the SCD flag. If a NACK is
|
||
|
// received, clear the NACK bit and command a stop. Otherwise, move on to the read
|
||
|
// data portion of the communication.
|
||
|
else if(IntSource == I2C_ARDY_ISRC)
|
||
|
{
|
||
|
if(I2caRegs.I2CSTR.bit.NACK == 1)
|
||
|
{
|
||
|
I2caRegs.I2CMDR.bit.STP = 1;
|
||
|
I2caRegs.I2CSTR.all = I2C_CLR_NACK_BIT;
|
||
|
}
|
||
|
else if(CurrentMsgPtr->MsgStatus == I2C_MSGSTAT_SEND_NOSTOP_BUSY)
|
||
|
{
|
||
|
CurrentMsgPtr->MsgStatus = I2C_MSGSTAT_RESTART;
|
||
|
}
|
||
|
} // end of register access ready
|
||
|
|
||
|
else
|
||
|
{
|
||
|
// Generate some error due to invalid interrupt source
|
||
|
asm(" ESTOP0");
|
||
|
}
|
||
|
|
||
|
// Enable future I2C (PIE Group 8) interrupts
|
||
|
PieCtrlRegs.PIEACK.all = PIEACK_GROUP8;
|
||
|
}
|
||
|
|
||
|
void pass()
|
||
|
{
|
||
|
asm(" ESTOP0");
|
||
|
for(;;);
|
||
|
}
|
||
|
|
||
|
void fail()
|
||
|
{
|
||
|
asm(" ESTOP0");
|
||
|
for(;;);
|
||
|
}
|
||
|
|
||
|
|
||
|
//===========================================================================
|
||
|
// No more.
|
||
|
//===========================================================================
|