UKSS_ICE/v120/DSP2833x_examples/hrpwm_sfo/Example_2833xHRPWM_SFO.c

547 lines
20 KiB
C
Raw Normal View History

// TI File $Revision: /main/15 $
// Checkin $Date: May 5, 2008 15:25:56 $
//###########################################################################
//
// FILE: Example_2833xHRPWM_SFO.c
//
// TITLE: DSP2833x Device HRPWM example
//
// ASSUMPTIONS:
//
//
// This program requires the DSP2833x header files, which include the
// SFO_TI_Build_fpu.lib (or SFO_TI_Build.lib for fixed-point) and SFO.h
// files required by this example.
//
// !!NOTE!!
// By default, this example project is configured for floating-point math. All
// included libraries must be pre-compiled for floating-point math.
//
// Therefore, SFO_TI_Build_fpu.lib (compiled for floating-point) is included in the
// project instead of the SFO_TI_Build.lib (compiled for fixed-point).
//
// To convert the example for fixed-point math, follow the instructions in sfo_readme.txt
// in the /doc directory of the header files and peripheral examples package.
//
//
// Monitor ePWM1-ePWM4 pins on an oscilloscope as described
// below.
//
// EPWM1A is on GPIO0
// EPWM2A is on GPIO2
// EPWM3A is on GPIO4
// EPWM4A is on GPIO6
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This example modifies the MEP control registers to show edge displacement
// due to the HRPWM control extension of the respective ePWM module.
//
// This example calls the following TI's MEP Scale Factor Optimizer (SFO)
// software library functions:
//
// void SFO_MepEn(int i);
// initialize MEP_Scalefactor[i] dynamically when HRPWM is in use.
//
// void SFO_MepDis(int i);
// initialize MEP_Scalefactor[i] when HRPWM is not used
//
// Where MEP_ScaleFactor[5] is a global array variable used by the SFO library
//
// This example is intended to explain the HRPWM capabilities. The code can be
// optimized for code efficiency. Refer to TI's Digital power application
// examples and TI Digital Power Supply software libraries for details.
//
// All ePWM1A,2A,3A,4A channels (GPIO0, GPIO2, GPIO4, GPIO6) will have fine
// edge movement due to the HRPWM logic
//
// 1. 5MHz PWM (SYSCLK=150MHz) or 3.33MHz PWM (SYSCLK=100MHz), ePWM1A toggle low/high with MEP control on falling edge
//
// 2. 5MHz PWM (SYSCLK=150MHz) or 3.33MHz PWM (SYSCLK=100MHz) ePWM2A toggle low/high with MEP control on falling edge
//
// 3. 5MHz PWM (SYSCLK=150MHz) or 3.33MHz PWM (SYSCLK=100MHz) ePWM3A toggle high/low with MEP control on falling edge
//
// 4. 5MHz PWM (SYSCLK=150MHz) or 3.33MHz PWM (SYSCLK=100MHz) ePWM4A toggle high/low with MEP control on falling edge
//
// To load and run this example:
// 1. Run this example at 150MHz SYSCLKOUT (or 100 MHz SYSCLKOUT for 100 MHz devices)
// 2. Load the Example_2833xHRPWM_SFO.gel and observe variables in the watch window
// 3. Activate Real time mode
// 4. Run the code
// 5. Watch ePWM1A-4A waveforms on a Oscillosope
// 6. In the watch window:
// Set the variable UpdateFine = 1 to observe the ePWMxA output
// with HRPWM capabilites (default)
// Observe the duty cycle of the waveform changes in fine MEP steps
// 7. In the watch window:
// Change the variable UpdateFine to 0, to observe the
// ePWMxA output without HRPWM capabilites
// Observe the duty cycle of the waveform changes in coarse steps of 10nsec.
//
//
// Watch Variables:
// UpdateFine
// MEP_ScaleFactor
// EPwm1Regs.CMPA.all
// EPwm2Regs.CMPA.all
// EPwm3Regs.CMPA.all
// EPwm4Regs.CMPA.all
//
//
// IMPORTANT NOTE!!!!!
//
// THE SFO.H FUNCTIONS INCLUDED WITH THIS EXAMPLE ONLY SUPPORTS EPWM1-EPWM4. FOR
// SUPPORT FOR MORE THAN 4 EPWMS, USE SFO_V5.H WITH THE SFO_TI_BUILD_V5.LIB LIBRARY.
// SEE THE HRPWM REFERENCE GUIDE (SPRU924) FOR USAGE INFORMATION AND DIFFERENCES
// BETWEEN VERSIONS.
//
//###########################################################################
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
#include "DSP2833x_EPwm_defines.h" // useful defines for initialization
#include "SFO.h" // SFO library headerfile
// Declare your function prototypes here
//---------------------------------------------------------------
void HRPWM1_Config(int);
void HRPWM2_Config(int);
void HRPWM3_Config(int);
void HRPWM4_Config(int);
// General System nets - Useful for debug
Uint16 j,duty, DutyFine, n, UpdateFine;
volatile int i;
Uint32 temp;
// Global array used by the SFO library
int16 MEP_ScaleFactor[5];
volatile struct EPWM_REGS *ePWM[] =
{ &EPwm1Regs, &EPwm1Regs, &EPwm2Regs, &EPwm3Regs, &EPwm4Regs, &EPwm5Regs, &EPwm6Regs};
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this case, just init GPIO for ePWM1-ePWM4
// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3, ePWM4
// These functions are in the DSP2833x_EPwm.c file
InitEPwm1Gpio();
InitEPwm2Gpio();
InitEPwm3Gpio();
InitEPwm4Gpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// For this example, only initialize the ePWM
// Step 5. User specific code, enable interrupts:
UpdateFine = 1;
DutyFine = 0;
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS;
// MEP_ScaleFactor variables iitialization for SFO library functions
MEP_ScaleFactor[0] = 0; //Common Variables for SFO functions
MEP_ScaleFactor[1] = 0; //SFO for HRPWM1
MEP_ScaleFactor[2] = 0; //SFO for HRPWM2
MEP_ScaleFactor[3] = 0; //SFO for HRPWM3
MEP_ScaleFactor[4] = 0; //SFO for HRPWM4
// MEP_ScaleFactor variables initialized using function SFO_MepDis
while ( MEP_ScaleFactor[1] == 0 ) SFO_MepDis(1); //SFO for HRPWM1
while ( MEP_ScaleFactor[2] == 0 ) SFO_MepDis(2); //SFO for HRPWM2
while ( MEP_ScaleFactor[3] == 0 ) SFO_MepDis(3); //SFO for HRPWM3
while ( MEP_ScaleFactor[4] == 0 ) SFO_MepDis(4); //SFO for HRPWM4
// Initialize a common seed variable MEP_ScaleFactor[0] required for all SFO functions
MEP_ScaleFactor[0] = MEP_ScaleFactor[1]; //Common Variable for SFO library functions
/// Some useful Period vs Frequency values
// SYSCLKOUT = 150MHz 100 MHz
// -----------------------------------------
// Period Frequency Frequency
// 1000 150 kHz 100 KHz
// 800 187 kHz 125 KHz
// 600 250 kHz 167 KHz
// 500 300 kHz 200 KHz
// 250 600 kHz 400 KHz
// 200 750 kHz 500 KHz
// 100 1.5 MHz 1.0 MHz
// 50 3.0 MHz 2.0 MHz
// 30 5.0 MHz 3.33 MHz
// 25 6.0 MHz 4.0 MHz
// 20 7.5 MHz 5.0 MHz
// 12 12.5 MHz 8.33 MHz
// 10 15.0 MHz 10.0 MHz
// 9 16.7 MHz 11.1 MHz
// 8 18.8 MHz 12.5 MHz
// 7 21.4 MHz 14.3 MHz
// 6 25.0 MHz 16.7 MHz
// 5 30.0 MHz 20.0 MHz
//====================================================================
// ePWM and HRPWM register initializaition
//====================================================================
HRPWM1_Config(30); // ePWM1 target, 5 MHz PWM (SYSCLK=150MHz) or 3.33 MHz PWM (SYSCLK=100MHz)
HRPWM2_Config(30); // ePWM2 target, 5 MHz PWM (SYSCLK=150MHz) or 3.33 MHz PWM (SYSCLK=100MHz)
HRPWM3_Config(30); // ePWM3 target, 5 MHz PWM (SYSCLK=150MHz) or 3.33 MHz PWM (SYSCLK=100MHz)
HRPWM4_Config(30); // ePWM4 target, 5 MHz PWM (SYSCLK=150MHz) or 3.33 MHz PWM (SYSCLK=100MHz)
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
EDIS;
for(;;)
{
// Sweep DutyFine as a Q15 number from 0.2 - 0.999
for(DutyFine = 0x2300; DutyFine < 0x7000; DutyFine++)
{
// Variables
int16 CMPA_reg_val, CMPAHR_reg_val;
int32 temp;
if(UpdateFine)
{
/*
// CMPA_reg_val is calculated as a Q0.
// Since DutyFine is a Q15 number, and the period is Q0
// the product is Q15. So to store as a Q0, we shift right
// 15 bits.
CMPA_reg_val = ((long)DutyFine * EPwm1Regs.TBPRD)>>15;
// This next step is to obtain the remainder which was
// truncated during our 15 bit shift above.
// compute the whole value, and then subtract CMPA_reg_val
// shifted LEFT 15 bits:
temp = ((long)DutyFine * EPwm1Regs.TBPRD) ;
temp = temp - ((long)CMPA_reg_val<<15);
// This obtains the MEP count in digits, from
// 0,1, .... MEP_Scalefactor. Once again since this is Q15
// convert to Q0 by shifting:
CMPAHR_reg_val = (temp*MEP_ScaleFactor[1])>>15;
// Now the lower 8 bits contain the MEP count.
// Since the MEP count needs to be in the upper 8 bits of
// the 16 bit CMPAHR register, shift left by 8.
CMPAHR_reg_val = CMPAHR_reg_val << 8;
// Add the offset and rounding
CMPAHR_reg_val += 0x0180;
// Write the values to the registers as one 32-bit or two 16-bits
EPwm1Regs.CMPA.half.CMPA = CMPA_reg_val;
EPwm1Regs.CMPA.half.CMPAHR = CMPAHR_reg_val;
*/
// All the above operations may be condensed into
// the following form:
// EPWM1 calculations
CMPA_reg_val = ((long)DutyFine * EPwm1Regs.TBPRD)>>15;
temp = ((long)DutyFine * EPwm1Regs.TBPRD) ;
temp = temp - ((long)CMPA_reg_val<<15);
CMPAHR_reg_val = (temp*MEP_ScaleFactor[1])>>15;
CMPAHR_reg_val = CMPAHR_reg_val << 8;
CMPAHR_reg_val += 0x0180;
// Example for a 32 bit write to CMPA:CMPAHR
EPwm1Regs.CMPA.all = ((long)CMPA_reg_val)<<16 | CMPAHR_reg_val;
// EPWM2 calculations
CMPA_reg_val = ((long)DutyFine * EPwm2Regs.TBPRD)>>15;
temp = ((long)DutyFine * EPwm2Regs.TBPRD) ;
temp = temp - ((long)CMPA_reg_val<<15);
CMPAHR_reg_val = (temp*MEP_ScaleFactor[2])>>15;
CMPAHR_reg_val = CMPAHR_reg_val << 8;
CMPAHR_reg_val += 0x0180;
// Example as a 16 bit write to CMPA and then a 16-bit write to CMPAHR
EPwm2Regs.CMPA.half.CMPA = CMPA_reg_val;
EPwm2Regs.CMPA.half.CMPAHR = CMPAHR_reg_val;
// EPWM3 calculations
CMPA_reg_val = ((long)DutyFine * EPwm3Regs.TBPRD)>>15;
temp = ((long)DutyFine * EPwm3Regs.TBPRD) ;
temp = temp - ((long)CMPA_reg_val<<15);
CMPAHR_reg_val = (temp*MEP_ScaleFactor[3])>>15;
CMPAHR_reg_val = CMPAHR_reg_val << 8;
CMPAHR_reg_val += 0x0180;
EPwm3Regs.CMPA.half.CMPA = CMPA_reg_val;
EPwm3Regs.CMPA.half.CMPAHR = CMPAHR_reg_val;
// EPWM4 calculations
CMPA_reg_val = ((long)DutyFine * EPwm4Regs.TBPRD)>>15;
temp = ((long)DutyFine * EPwm4Regs.TBPRD) ;
temp = temp - ((long)CMPA_reg_val<<15);
CMPAHR_reg_val = (temp*MEP_ScaleFactor[4])>>15;
CMPAHR_reg_val = CMPAHR_reg_val << 8;
CMPAHR_reg_val += 0x0180;
EPwm4Regs.CMPA.half.CMPA = CMPA_reg_val;
EPwm4Regs.CMPA.half.CMPAHR = CMPAHR_reg_val;
}
else
{
// CMPA_reg_val is calculated as a Q0.
// Since DutyFine is a Q15 number, and the period is Q0
// the product is Q15. So to store as a Q0, we shift right
// 15 bits.
EPwm1Regs.CMPA.half.CMPA = ((long)DutyFine * EPwm1Regs.TBPRD>>15);
EPwm2Regs.CMPA.half.CMPA = ((long)DutyFine * EPwm2Regs.TBPRD)>>15;
EPwm3Regs.CMPA.half.CMPA = ((long)DutyFine * EPwm3Regs.TBPRD)>>15;
EPwm4Regs.CMPA.half.CMPA = ((long)DutyFine * EPwm4Regs.TBPRD)>>15;
}
for (i=0;i<300;i++)
{
// Call the scale factor optimizer lib
SFO_MepEn(1);
SFO_MepEn(2);
SFO_MepEn(3);
SFO_MepEn(4);
}
}
}
}
void HRPWM1_Config(period)
{
// ePWM1 register configuration with HRPWM
// ePWM1A toggle low/high with MEP control on Rising edge
EPwm1Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm1Regs.TBPRD = period-1; // PWM frequency = 1 / period
EPwm1Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially
EPwm1Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension
EPwm1Regs.CMPB = period / 2; // set duty 50% initially
EPwm1Regs.TBPHS.all = 0;
EPwm1Regs.TBCTR = 0;
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // EPWM1 is the Master
EPwm1Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm1Regs.TBCTL.bit.FREE_SOFT = 11;
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm1Regs.AQCTLA.bit.ZRO = AQ_SET; // PWM toggle high/low
EPwm1Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm1Regs.AQCTLB.bit.ZRO = AQ_SET;
EPwm1Regs.AQCTLB.bit.CBU = AQ_CLEAR;
EALLOW;
EPwm1Regs.HRCNFG.all = 0x0;
EPwm1Regs.HRCNFG.bit.EDGMODE = HR_FEP; //MEP control on falling edge
EPwm1Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm1Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
void HRPWM2_Config(period)
{
// ePWM2 register configuration with HRPWM
// ePWM2A toggle low/high with MEP control on Rising edge
EPwm2Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm2Regs.TBPRD = period-1; // PWM frequency = 1 / period
EPwm2Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially
EPwm1Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension
EPwm2Regs.CMPB = period / 2; // set duty 50% initially
EPwm2Regs.TBPHS.all = 0;
EPwm2Regs.TBCTR = 0;
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM2 is the Master
EPwm2Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm2Regs.TBCTL.bit.FREE_SOFT = 11;
EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm2Regs.AQCTLA.bit.ZRO = AQ_SET; // PWM toggle high/low
EPwm2Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm2Regs.AQCTLB.bit.ZRO = AQ_SET;
EPwm2Regs.AQCTLB.bit.CBU = AQ_CLEAR;
EALLOW;
EPwm2Regs.HRCNFG.all = 0x0;
EPwm2Regs.HRCNFG.bit.EDGMODE = HR_FEP; //MEP control on falling edge
EPwm2Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm2Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
void HRPWM3_Config(period)
{
// ePWM3 register configuration with HRPWM
// ePWM3A toggle high/low with MEP control on falling edge
EPwm3Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm3Regs.TBPRD = period-1; // PWM frequency = 1 / period
EPwm3Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially
EPwm3Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension
EPwm3Regs.TBPHS.all = 0;
EPwm3Regs.TBCTR = 0;
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM3 is the Master
EPwm3Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm3Regs.TBCTL.bit.FREE_SOFT = 11;
EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm3Regs.AQCTLA.bit.ZRO = AQ_SET; // PWM toggle high/low
EPwm3Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm3Regs.AQCTLB.bit.ZRO = AQ_SET;
EPwm3Regs.AQCTLB.bit.CBU = AQ_CLEAR;
EALLOW;
EPwm3Regs.HRCNFG.all = 0x0;
EPwm3Regs.HRCNFG.bit.EDGMODE = HR_FEP; //MEP control on falling edge
EPwm3Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm3Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
void HRPWM4_Config(period)
{
// ePWM4 register configuration with HRPWM
// ePWM4A toggle high/low with MEP control on falling edge
EPwm4Regs.TBCTL.bit.PRDLD = TB_IMMEDIATE; // set Immediate load
EPwm4Regs.TBPRD = period-1; // PWM frequency = 1 / period
EPwm4Regs.CMPA.half.CMPA = period / 2; // set duty 50% initially
EPwm4Regs.CMPA.half.CMPAHR = (1 << 8); // initialize HRPWM extension
EPwm4Regs.CMPB = period / 2; // set duty 50% initially
EPwm4Regs.TBPHS.all = 0;
EPwm4Regs.TBCTR = 0;
EPwm4Regs.TBCTL.bit.CTRMODE = TB_COUNT_UP;
EPwm4Regs.TBCTL.bit.PHSEN = TB_DISABLE; // ePWM4 is the Master
EPwm4Regs.TBCTL.bit.SYNCOSEL = TB_SYNC_DISABLE;
EPwm4Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1;
EPwm4Regs.TBCTL.bit.CLKDIV = TB_DIV1;
EPwm4Regs.TBCTL.bit.FREE_SOFT = 11;
EPwm4Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm4Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
EPwm4Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
EPwm4Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm4Regs.AQCTLA.bit.ZRO = AQ_SET; // PWM toggle high/low
EPwm4Regs.AQCTLA.bit.CAU = AQ_CLEAR;
EPwm4Regs.AQCTLB.bit.ZRO = AQ_SET;
EPwm4Regs.AQCTLB.bit.CBU = AQ_CLEAR;
EALLOW;
EPwm4Regs.HRCNFG.all = 0x0;
EPwm4Regs.HRCNFG.bit.EDGMODE = HR_FEP; //MEP control on falling edge
EPwm4Regs.HRCNFG.bit.CTLMODE = HR_CMP;
EPwm4Regs.HRCNFG.bit.HRLOAD = HR_CTR_ZERO;
EDIS;
}
// No more