UKSS_ICE/v120/DSP2833x_examples/epwm_deadband/Example_2833xEPwmDeadBand.c

458 lines
13 KiB
C
Raw Normal View History

// TI File $Revision: /main/9 $
// Checkin $Date: April 21, 2008 15:41:33 $
//###########################################################################
//
// FILE: Example_2833xEpwmDeadBand.c
//
// TITLE: Check PWM deadband generation
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Monitor ePWM1 - ePWM3 on an Oscilloscope as described
// below.
//
// EPWM1A is on GPIO0
// EPWM1B is on GPIO1
//
// EPWM2A is on GPIO2
// EPWM2B is on GPIO3
//
// EPWM3A is on GPIO4
// EPWM3B is on GPIO5
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This example configures ePWM1, ePWM2 and ePWM3 for:
// - Count up/down
// - Deadband
//
// 3 Examples are included:
// * ePWM1: Active low PWMs
// * ePWM2: Active low complementary PWMs
// * ePWM3: Active high complementary PWMs
//
// Each ePWM is configured to interrupt on the 3rd zero event
// when this happens the deadband is modified such that
// 0 <= DB <= DB_MAX. That is, the deadband will move up and
// down between 0 and the maximum value.
//
//
// View the EPWM1A/B, EPWM2A/B and EPWM3A/B waveforms
// via an oscilloscope
//
//
//###########################################################################
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
// Prototype statements for functions found within this file.
void InitEPwm1Example(void);
void InitEPwm2Example(void);
void InitEPwm3Example(void);
interrupt void epwm1_isr(void);
interrupt void epwm2_isr(void);
interrupt void epwm3_isr(void);
// Global variables used in this example
Uint32 EPwm1TimerIntCount;
Uint32 EPwm2TimerIntCount;
Uint32 EPwm3TimerIntCount;
Uint16 EPwm1_DB_Direction;
Uint16 EPwm2_DB_Direction;
Uint16 EPwm3_DB_Direction;
// Maximum Dead Band values
#define EPWM1_MAX_DB 0x03FF
#define EPWM2_MAX_DB 0x03FF
#define EPWM3_MAX_DB 0x03FF
#define EPWM1_MIN_DB 0
#define EPWM2_MIN_DB 0
#define EPWM3_MIN_DB 0
// To keep track of which way the Dead Band is moving
#define DB_UP 1
#define DB_DOWN 0
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this case just init GPIO pins for ePWM1, ePWM2, ePWM3
// These functions are in the DSP2833x_EPwm.c file
InitEPwm1Gpio();
InitEPwm2Gpio();
InitEPwm3Gpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.EPWM1_INT = &epwm1_isr;
PieVectTable.EPWM2_INT = &epwm2_isr;
PieVectTable.EPWM3_INT = &epwm3_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
EDIS;
InitEPwm1Example();
InitEPwm2Example();
InitEPwm3Example();
EALLOW;
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
EDIS;
// Step 5. User specific code, enable interrupts
// Initalize counters:
EPwm1TimerIntCount = 0;
EPwm2TimerIntCount = 0;
EPwm3TimerIntCount = 0;
// Enable CPU INT3 which is connected to EPWM1-3 INT:
IER |= M_INT3;
// Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
PieCtrlRegs.PIEIER3.bit.INTx2 = 1;
PieCtrlRegs.PIEIER3.bit.INTx3 = 1;
// Enable global Interrupts and higher priority real-time debug events:
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
// Step 6. IDLE loop. Just sit and loop forever (optional):
for(;;)
{
asm(" NOP");
}
}
interrupt void epwm1_isr(void)
{
if(EPwm1_DB_Direction == DB_UP)
{
if(EPwm1Regs.DBFED < EPWM1_MAX_DB)
{
EPwm1Regs.DBFED++;
EPwm1Regs.DBRED++;
}
else
{
EPwm1_DB_Direction = DB_DOWN;
EPwm1Regs.DBFED--;
EPwm1Regs.DBRED--;
}
}
else
{
if(EPwm1Regs.DBFED == EPWM1_MIN_DB)
{
EPwm1_DB_Direction = DB_UP;
EPwm1Regs.DBFED++;
EPwm1Regs.DBRED++;
}
else
{
EPwm1Regs.DBFED--;
EPwm1Regs.DBRED--;
}
}
EPwm1TimerIntCount++;
// Clear INT flag for this timer
EPwm1Regs.ETCLR.bit.INT = 1;
// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
interrupt void epwm2_isr(void)
{
if(EPwm2_DB_Direction == DB_UP)
{
if(EPwm2Regs.DBFED < EPWM2_MAX_DB)
{
EPwm2Regs.DBFED++;
EPwm2Regs.DBRED++;
}
else
{
EPwm2_DB_Direction = DB_DOWN;
EPwm2Regs.DBFED--;
EPwm2Regs.DBRED--;
}
}
else
{
if(EPwm2Regs.DBFED == EPWM2_MIN_DB)
{
EPwm2_DB_Direction = DB_UP;
EPwm2Regs.DBFED++;
EPwm2Regs.DBRED++;
}
else
{
EPwm2Regs.DBFED--;
EPwm2Regs.DBRED--;
}
}
EPwm2TimerIntCount++;
// Clear INT flag for this timer
EPwm2Regs.ETCLR.bit.INT = 1;
// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
interrupt void epwm3_isr(void)
{
if(EPwm3_DB_Direction == DB_UP)
{
if(EPwm3Regs.DBFED < EPWM3_MAX_DB)
{
EPwm3Regs.DBFED++;
EPwm3Regs.DBRED++;
}
else
{
EPwm3_DB_Direction = DB_DOWN;
EPwm3Regs.DBFED--;
EPwm3Regs.DBRED--;
}
}
else
{
if(EPwm3Regs.DBFED == EPWM3_MIN_DB)
{
EPwm3_DB_Direction = DB_UP;
EPwm3Regs.DBFED++;
EPwm3Regs.DBRED++;
}
else
{
EPwm3Regs.DBFED--;
EPwm3Regs.DBRED--;
}
}
EPwm3TimerIntCount++;
// Clear INT flag for this timer
EPwm3Regs.ETCLR.bit.INT = 1;
// Acknowledge this interrupt to receive more interrupts from group 3
PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
}
void InitEPwm1Example()
{
EPwm1Regs.TBPRD = 6000; // Set timer period
EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
EPwm1Regs.TBCTR = 0x0000; // Clear counter
// Setup TBCLK
EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV4;
EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW; // Load registers every ZERO
EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
// Setup compare
EPwm1Regs.CMPA.half.CMPA = 3000;
// Set actions
EPwm1Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM1A on Zero
EPwm1Regs.AQCTLA.bit.CAD = AQ_CLEAR;
EPwm1Regs.AQCTLB.bit.CAU = AQ_CLEAR; // Set PWM1A on Zero
EPwm1Regs.AQCTLB.bit.CAD = AQ_SET;
// Active Low PWMs - Setup Deadband
EPwm1Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
EPwm1Regs.DBCTL.bit.POLSEL = DB_ACTV_LO;
EPwm1Regs.DBCTL.bit.IN_MODE = DBA_ALL;
EPwm1Regs.DBRED = EPWM1_MIN_DB;
EPwm1Regs.DBFED = EPWM1_MIN_DB;
EPwm1_DB_Direction = DB_UP;
// Interrupt where we will change the Deadband
EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm1Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
}
void InitEPwm2Example()
{
EPwm2Regs.TBPRD = 6000; // Set timer period
EPwm2Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
EPwm2Regs.TBCTR = 0x0000; // Clear counter
// Setup TBCLK
EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV4; // Slow just to observe on the scope
// Setup compare
EPwm2Regs.CMPA.half.CMPA = 3000;
// Set actions
EPwm2Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM2A on Zero
EPwm2Regs.AQCTLA.bit.CAD = AQ_CLEAR;
EPwm2Regs.AQCTLB.bit.CAU = AQ_CLEAR; // Set PWM2A on Zero
EPwm2Regs.AQCTLB.bit.CAD = AQ_SET;
// Active Low complementary PWMs - setup the deadband
EPwm2Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
EPwm2Regs.DBCTL.bit.POLSEL = DB_ACTV_LOC;
EPwm2Regs.DBCTL.bit.IN_MODE = DBA_ALL;
EPwm2Regs.DBRED = EPWM2_MIN_DB;
EPwm2Regs.DBFED = EPWM2_MIN_DB;
EPwm2_DB_Direction = DB_UP;
// Interrupt where we will modify the deadband
EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
EPwm2Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm2Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
}
void InitEPwm3Example()
{
EPwm3Regs.TBPRD = 6000; // Set timer period
EPwm3Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
EPwm3Regs.TBCTR = 0x0000; // Clear counter
// Setup TBCLK
EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV4; // Clock ratio to SYSCLKOUT
EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV4; // Slow so we can observe on the scope
// Setup compare
EPwm3Regs.CMPA.half.CMPA = 3000;
// Set actions
EPwm3Regs.AQCTLA.bit.CAU = AQ_SET; // Set PWM3A on Zero
EPwm3Regs.AQCTLA.bit.CAD = AQ_CLEAR;
EPwm3Regs.AQCTLB.bit.CAU = AQ_CLEAR; // Set PWM3A on Zero
EPwm3Regs.AQCTLB.bit.CAD = AQ_SET;
// Active high complementary PWMs - Setup the deadband
EPwm3Regs.DBCTL.bit.OUT_MODE = DB_FULL_ENABLE;
EPwm3Regs.DBCTL.bit.POLSEL = DB_ACTV_HIC;
EPwm3Regs.DBCTL.bit.IN_MODE = DBA_ALL;
EPwm3Regs.DBRED = EPWM3_MIN_DB;
EPwm3Regs.DBFED = EPWM3_MIN_DB;
EPwm3_DB_Direction = DB_UP;
// Interrupt where we will change the deadband
EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
EPwm3Regs.ETSEL.bit.INTEN = 1; // Enable INT
EPwm3Regs.ETPS.bit.INTPRD = ET_3RD; // Generate INT on 3rd event
}
//===========================================================================
// No more.
//===========================================================================