UKSS_ICE/v120/DSP2833x_examples/ecap_apwm/Example_2833xECap_apwm.c

224 lines
7.8 KiB
C
Raw Normal View History

// TI File $Revision: /main/10 $
// Checkin $Date: April 21, 2008 15:41:24 $
//###########################################################################
//
// FILE: Example_2833xECap_apwm.c
//
// TITLE: DSP2833x ECAP APWM Example
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Monitor eCAP1 - eCAP4 pins on a oscilloscope as
// described below.
//
// eCAP1 on GPIO24
// eCAP2 on GPIO7
// eCAP3 on GPIO9
// eCAP4 on GPIO11
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This program sets up the eCAP pins in the APWM mode.
// This program runs at 150 MHz SYSCLKOUT assuming a 30 MHz
// XCLKIN or 100 MHz SYSCLKOUT assuming a 20 MHz XCLKIN.
//
// For 150 MHz devices:
//
// eCAP1 will come out on the GPIO24 pin
// This pin is configured to vary between 7.5 Hz and 15 Hz using
// the shadow registers to load the next period/compare values
//
// eCAP2 will come out on the GPIO7 pin
// this pin is configured as a 7.5 Hz output
//
// eCAP3 will come out on the GPIO9 pin
// this pin is configured as a 1.5 Hz output
//
//
// eCAP4 will come out on the GPIO11 pin
// this pin is configured as a 30 kHz output
//
// All frequencies assume a 30 Mhz input clock. The XCLKOUT pin
// should show 150Mhz.
// --------------------------------------------------------------
// For 100 MHz devices:
//
// eCAP1 will come out on the GPIO24 pin
// This pin is configured to vary between 5 Hz and 10 Hz using
// the shadow registers to load the next period/compare values
//
// eCAP2 will come out on the GPIO7 pin
// this pin is configured as a 5 Hz output
//
// eCAP3 will come out on the GPIO9 pin
// this pin is configured as a 1 Hz output
//
// eCAP4 will come out on the GPIO11 pin
// this pin is configured as a 20kHz output
//
// All frequencies assume a 20 Mhz input clock. The XCLKOUT pin
// should show 100Mhz.
//
//
// Watch Variables:
//
//
//
//###########################################################################
// Original Author: D.F.
//
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
// Global variables
Uint16 direction = 0;
void main(void)
{
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Initialize the GPIO pins for eCAP.
// This function is found in the DSP2833x_ECap.c file
InitECapGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
// No interrupts used for this example.
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// Step 5. User specific code
// Setup APWM mode on CAP1, set period and compare registers
ECap1Regs.ECCTL2.bit.CAP_APWM = 1; // Enable APWM mode
ECap1Regs.CAP1 = 0x01312D00; // Set Period value
ECap1Regs.CAP2 = 0x00989680; // Set Compare value
ECap1Regs.ECCLR.all = 0x0FF; // Clear pending interrupts
ECap1Regs.ECEINT.bit.CTR_EQ_CMP = 1; // enable Compare Equal Int
// Setup APWM mode on CAP2, set period and compare registers
ECap2Regs.ECCTL2.bit.CAP_APWM = 1; // Enable APWM mode
ECap2Regs.CAP1 = 0x01312D00; // Set Period value
ECap2Regs.CAP2 = 0x00989680; // Set Compare value
ECap2Regs.ECCLR.all = 0x0FF; // Clear pending interrupts
ECap1Regs.ECEINT.bit.CTR_EQ_CMP = 1; // enable Compare Equal Int
// Setup APWM mode on CAP3, set period and compare registers
ECap3Regs.ECCTL2.bit.CAP_APWM = 1; // Enable APWM mode
ECap3Regs.CAP1 = 0x05F5E100; // Set Period value
ECap3Regs.CAP2 = 0x02FAF080; // Set Compare value
ECap3Regs.ECCLR.all = 0x0FF; // Clear pending interrupts
ECap1Regs.ECEINT.bit.CTR_EQ_CMP = 1; // enable Compare Equal Int
// Setup APWM mode on CAP4, set period and compare registers
ECap4Regs.ECCTL2.bit.CAP_APWM = 1; // Enable APWM mode
ECap4Regs.CAP1 = 0x00001388; // Set Period value
ECap4Regs.CAP2 = 0x000009C4; // Set Compare value
ECap4Regs.ECCLR.all = 0x0FF; // Clear pending interrupts
ECap1Regs.ECEINT.bit.CTR_EQ_CMP = 1; // enable Compare Equal Int
// Start counters
ECap1Regs.ECCTL2.bit.TSCTRSTOP = 1;
ECap2Regs.ECCTL2.bit.TSCTRSTOP = 1;
ECap3Regs.ECCTL2.bit.TSCTRSTOP = 1;
ECap4Regs.ECCTL2.bit.TSCTRSTOP = 1;
for(;;)
{
// set next duty cycle to 50%
ECap1Regs.CAP4 = ECap1Regs.CAP1 >> 1;
// vary freq between 7.5 Hz and 15 Hz (for 150MHz SYSCLKOUT) 5 Hz and 10 Hz (for 100 MHz SYSCLKOUT)
if(ECap1Regs.CAP1 >= 0x01312D00)
{
direction = 0;
} else if (ECap1Regs.CAP1 <= 0x00989680)
{
direction = 1;
}
if(direction == 0)
{
ECap1Regs.CAP3 = ECap1Regs.CAP1 - 500000;
} else
{
ECap1Regs.CAP3 = ECap1Regs.CAP1 + 500000;
}
}
}
//===========================================================================
// No more.
//===========================================================================