UKSS_ICE/v120/DSP2833x_examples/ecan_back2back/Example_2833xECanBack2Back.c

310 lines
11 KiB
C
Raw Normal View History

// TI File $Revision: /main/11 $
// Checkin $Date: April 21, 2008 15:41:18 $
//###########################################################################
//
// FILE: Example_2833xECanBack2Back.c
//
// TITLE: DSP2833x eCAN Back-to-back transmission and reception in
// SELF-TEST mode
//
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// This progrm uses the peripheral's self test mode.
// Other then boot mode configuration, no other hardware configuration
// is required.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
// DESCRIPTION:
//
// This test transmits data back-to-back at high speed without
// stopping.
// The received data is verified. Any error is flagged.
// MBX0 transmits to MBX16, MBX1 transmits to MBX17 and so on....
// This program illustrates the use of self-test mode
//
//###########################################################################
// Original Author H.J.
//
// $TI Release: DSP2833x/DSP2823x Header Files V1.20 $
// $Release Date: August 1, 2008 $
//###########################################################################
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
// Prototype statements for functions found within this file.
void mailbox_check(int32 T1, int32 T2, int32 T3);
void mailbox_read(int16 i);
// Global variable for this example
Uint32 ErrorCount;
Uint32 PassCount;
Uint32 MessageReceivedCount;
Uint32 TestMbox1 = 0;
Uint32 TestMbox2 = 0;
Uint32 TestMbox3 = 0;
void main(void)
{
Uint16 j;
// eCAN control registers require read/write access using 32-bits. Thus we
// will create a set of shadow registers for this example. These shadow
// registers will be used to make sure the access is 32-bits and not 16.
struct ECAN_REGS ECanaShadow;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// For this example, configure CAN pins using GPIO regs here
// This function is found in DSP2833x_ECan.c
InitECanGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
// Step 5. User specific code, enable interrupts:
MessageReceivedCount = 0;
ErrorCount = 0;
PassCount = 0;
InitECana(); // Initialize eCAN-A module
// Mailboxs can be written to 16-bits or 32-bits at a time
// Write to the MSGID field of TRANSMIT mailboxes MBOX0 - 15
ECanaMboxes.MBOX0.MSGID.all = 0x9555AAA0;
ECanaMboxes.MBOX1.MSGID.all = 0x9555AAA1;
ECanaMboxes.MBOX2.MSGID.all = 0x9555AAA2;
ECanaMboxes.MBOX3.MSGID.all = 0x9555AAA3;
ECanaMboxes.MBOX4.MSGID.all = 0x9555AAA4;
ECanaMboxes.MBOX5.MSGID.all = 0x9555AAA5;
ECanaMboxes.MBOX6.MSGID.all = 0x9555AAA6;
ECanaMboxes.MBOX7.MSGID.all = 0x9555AAA7;
ECanaMboxes.MBOX8.MSGID.all = 0x9555AAA8;
ECanaMboxes.MBOX9.MSGID.all = 0x9555AAA9;
ECanaMboxes.MBOX10.MSGID.all = 0x9555AAAA;
ECanaMboxes.MBOX11.MSGID.all = 0x9555AAAB;
ECanaMboxes.MBOX12.MSGID.all = 0x9555AAAC;
ECanaMboxes.MBOX13.MSGID.all = 0x9555AAAD;
ECanaMboxes.MBOX14.MSGID.all = 0x9555AAAE;
ECanaMboxes.MBOX15.MSGID.all = 0x9555AAAF;
// Write to the MSGID field of RECEIVE mailboxes MBOX16 - 31
ECanaMboxes.MBOX16.MSGID.all = 0x9555AAA0;
ECanaMboxes.MBOX17.MSGID.all = 0x9555AAA1;
ECanaMboxes.MBOX18.MSGID.all = 0x9555AAA2;
ECanaMboxes.MBOX19.MSGID.all = 0x9555AAA3;
ECanaMboxes.MBOX20.MSGID.all = 0x9555AAA4;
ECanaMboxes.MBOX21.MSGID.all = 0x9555AAA5;
ECanaMboxes.MBOX22.MSGID.all = 0x9555AAA6;
ECanaMboxes.MBOX23.MSGID.all = 0x9555AAA7;
ECanaMboxes.MBOX24.MSGID.all = 0x9555AAA8;
ECanaMboxes.MBOX25.MSGID.all = 0x9555AAA9;
ECanaMboxes.MBOX26.MSGID.all = 0x9555AAAA;
ECanaMboxes.MBOX27.MSGID.all = 0x9555AAAB;
ECanaMboxes.MBOX28.MSGID.all = 0x9555AAAC;
ECanaMboxes.MBOX29.MSGID.all = 0x9555AAAD;
ECanaMboxes.MBOX30.MSGID.all = 0x9555AAAE;
ECanaMboxes.MBOX31.MSGID.all = 0x9555AAAF;
// Configure Mailboxes 0-15 as Tx, 16-31 as Rx
// Since this write is to the entire register (instead of a bit
// field) a shadow register is not required.
ECanaRegs.CANMD.all = 0xFFFF0000;
// Enable all Mailboxes */
// Since this write is to the entire register (instead of a bit
// field) a shadow register is not required.
ECanaRegs.CANME.all = 0xFFFFFFFF;
// Specify that 8 bits will be sent/received
ECanaMboxes.MBOX0.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX1.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX2.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX3.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX4.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX5.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX6.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX7.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX8.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX9.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX10.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX11.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX12.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX13.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX14.MSGCTRL.bit.DLC = 8;
ECanaMboxes.MBOX15.MSGCTRL.bit.DLC = 8;
// Write to the mailbox RAM field of MBOX0 - 15
ECanaMboxes.MBOX0.MDL.all = 0x9555AAA0;
ECanaMboxes.MBOX0.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX1.MDL.all = 0x9555AAA1;
ECanaMboxes.MBOX1.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX2.MDL.all = 0x9555AAA2;
ECanaMboxes.MBOX2.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX3.MDL.all = 0x9555AAA3;
ECanaMboxes.MBOX3.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX4.MDL.all = 0x9555AAA4;
ECanaMboxes.MBOX4.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX5.MDL.all = 0x9555AAA5;
ECanaMboxes.MBOX5.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX6.MDL.all = 0x9555AAA6;
ECanaMboxes.MBOX6.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX7.MDL.all = 0x9555AAA7;
ECanaMboxes.MBOX7.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX8.MDL.all = 0x9555AAA8;
ECanaMboxes.MBOX8.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX9.MDL.all = 0x9555AAA9;
ECanaMboxes.MBOX9.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX10.MDL.all = 0x9555AAAA;
ECanaMboxes.MBOX10.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX11.MDL.all = 0x9555AAAB;
ECanaMboxes.MBOX11.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX12.MDL.all = 0x9555AAAC;
ECanaMboxes.MBOX12.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX13.MDL.all = 0x9555AAAD;
ECanaMboxes.MBOX13.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX14.MDL.all = 0x9555AAAE;
ECanaMboxes.MBOX14.MDH.all = 0x89ABCDEF;
ECanaMboxes.MBOX15.MDL.all = 0x9555AAAF;
ECanaMboxes.MBOX15.MDH.all = 0x89ABCDEF;
// Since this write is to the entire register (instead of a bit
// field) a shadow register is not required.
EALLOW;
ECanaRegs.CANMIM.all = 0xFFFFFFFF;
// Configure the eCAN for self test mode
// Enable the enhanced features of the eCAN.
EALLOW;
ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
ECanaShadow.CANMC.bit.STM = 1; // Configure CAN for self-test mode
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
EDIS;
// Begin transmitting
for(;;)
{
ECanaRegs.CANTRS.all = 0x0000FFFF; // Set TRS for all transmit mailboxes
while(ECanaRegs.CANTA.all != 0x0000FFFF ) {} // Wait for all TAn bits to be set..
ECanaRegs.CANTA.all = 0x0000FFFF; // Clear all TAn
MessageReceivedCount++;
//Read from Receive mailboxes and begin checking for data */
for(j=0; j<16; j++) // Read & check 16 mailboxes
{
mailbox_read(j); // This func reads the indicated mailbox data
mailbox_check(TestMbox1,TestMbox2,TestMbox3); // Checks the received data
}
}
}
// This function reads out the contents of the indicated
// by the Mailbox number (MBXnbr).
void mailbox_read(int16 MBXnbr)
{
volatile struct MBOX *Mailbox;
Mailbox = &ECanaMboxes.MBOX0 + MBXnbr;
TestMbox1 = Mailbox->MDL.all; // = 0x9555AAAn (n is the MBX number)
TestMbox2 = Mailbox->MDH.all; // = 0x89ABCDEF (a constant)
TestMbox3 = Mailbox->MSGID.all;// = 0x9555AAAn (n is the MBX number)
} // MSGID of a rcv MBX is transmitted as the MDL data.
void mailbox_check(int32 T1, int32 T2, int32 T3)
{
if((T1 != T3) || ( T2 != 0x89ABCDEF))
{
ErrorCount++;
}
else
{
PassCount++;
}
}
//===========================================================================
// No more.
//===========================================================================